Citation: | FAN Kai, YIN Yanpeng, SONG Lingli, WANG Sanbing. Comparison of Critical Benchmark Experiment Similarity and Dissimilarity Measures in Application[J]. Atomic Energy Science and Technology, 2023, 57(11): 2182-2191. DOI: 10.7538/yzk.2023.youxian.0486 |
[1] |
International handbook of evaluated criticality safety benchmark experiments[ED/OL]. (2018-07). https:∥www.oecd-nea.org/science/wpncs/icsbep/.
|
[2] |
International handbook of evaluated reactor physics benchmark experiments[R]. Paris: OECD Nuclear Energy Agency, 2017.
|
[3] |
KODELI I A, SARTORI E. SINBAD: Radiation shielding benchmark experiments[J]. Annals of Nuclear Energy, 2021, 159: 1-16.
|
[4] |
LABAUVE R J. Bare, highly enriched uranium sphere (GODIVA), NEA/NSC/DOC(95)03, Volume Ⅱ, HEU-MET-FAST-001[R]. US: Los Alamos National Laboratory, 2002.
|
[5] |
JEFFREY A F. Reevaluation of the Jezebel benchmark, LA-UR-14-21554[R]. US: Los Alamos National Laboratory, 2014.
|
[6] |
Validation of neutron transport methods for nuclear criticality safety calculations, ANSI/ANS 8.24-2017(R2023)[R]. US: American Nuclear Society, 2023.
|
[7] |
BROADHEAD B L, REARDEN B T, HOPPER C M. Sensitivity- and uncertainty-based criticality safety validation techniques[J]. Nuclear Science and Engineering, 2004, 146: 340-366.
|
[8] |
de SAINT J C. Coordinated evaluation of plutonium-239 in the resonance region, NEA/NSC/WPEC/DOC(2014)447[R]. France: Nuclear Energy Division, CEA, 2014.
|
[9] |
PALMIOTTI G, BRIGGS J B, KUGO T, et al. Applications of integral benchmark data[J]. Nuclear Science and Engineering, 2014, 178: 295-310.
|
[10] |
KLEEDTKE N, GROVE T, HUTCHINSON J, et al. Designing critical experiments using Gaussian process optimization, LA-UR-19-27536[R]. US: Los Alamos National Laboratory, 2019.
|
[11] |
GOLUOGLU S, HOPPER C M, REARDEN B T. Extended interpretation of sensitivity data for benchmark areas of applicability[C]∥American Nuclear Society 2003 Annual Meeting. San Diego, California: [s. n.], 2003.
|
[12] |
宁通,周琦,朱庆福,等. 相似性分析方法在零功率堆物理设计上的应用[J]. 原子能科学技术,2018,52(9):1671-1676.
NING Tong, ZHOU Qi, ZHU Qingfu, et al. Application of similarity analysis method in physical design of zero power reactor[J]. Atomic Energy Science and Technology, 2018, 52(9): 1671-1676(in Chinese). |
[13] |
FAN Kai, LI Fu, WANG Jiangmeng, et al. Using covariance weighted Euclidean distance to assess the dissimilarity between integral experiments[C]∥EPJ Web of Conferences 239. [S. l.]: [s. n.], 2020.
|
[14] |
THEODORIDIS S, KOUTROUMBAS K. Pattern recognition[M]. Fourth edition. [S. l.]: Elsevier, 2009.
|
[15] |
DICE: Database for the international handbook of evaluated criticality safety benchmark experiments[M]. [S. l.]: [s. n.], 2006.
|
[16] |
刘勇,曹良志,吴宏春,等. 基于经典微扰理论的特征值灵敏度和不确定度分析[J]. 原子能科学技术,2015,49(7):1247-1253.
LIU Yong, CAO Liangzhi, WU Hongchun, et al. Eigenvalue sensitivity and uncertainty analysis based on classical perturbation theory[J]. Atomic Energy Science and Technology, 2015, 49(7): 1247-1253(in Chinese). |
[17] |
BROWN D A, CHADWICK M B, CAPOTE R, et al. ENDF/B-Ⅷ.0: The 8th major release of the nuclear reaction data library with CIELO-project cross sections, new standards and thermal scattering data[J]. Nuclear Data Sheets, 2018, 148: 1-142.
|
[18] |
MacFARLANE R E, MUIR D W, BOICOURT R M, et al. The NJOY nuclear data processing system, Version 2016, LA-UR-17-20093[R]. US: Los Alamos National Laboratory, 2018.
|
[19] |
Scale: A comprehensive modeling and simulation suite for nuclear safety analysis and design, Version 6.1, ORNL/TM-2005/39[R]. US: Oak Ridge National Laboratory, 2011.
|