Citation: | BAI Na, MING Tianbo, XU Yaohua, WANG Yi, LI Yunfei, LI Li. Design of Novel and Low Cost Triple-node Upset Self-recoverable Latch[J]. Atomic Energy Science and Technology, 2023, 57(12): 2326-2336. DOI: 10.7538/yzk.2023.youxian.0625 |
[1] |
HUI X, YUN Z. Circuit and layout combination technique to enhance multiple nodes upset tolerance in latches[J]. IEICE Electronics Express, 2015, 12(9): 20150286.
|
[2] |
FERLET-CAVROIS V, MASSENGILL L W, GOUKER P. Single event transients in digital CMOS—A review[J]. IEEE Transactions on Nuclear Science, 2013, 60(3): 1767-1790.
|
[3] |
MESSENGER G C. Collection of charge on junction nodes from ion tracks[J]. IEEE Transactions on Nuclear Science, 1982, 29(6): 2024-2031.
|
[4] |
SONG S, KIM Y. New power-efficient flip-flop based on a true single-phase clock and robust to single-node upsets[J]. IEIE Transactions on Smart Processing and Computing, 2021, 10(2): 167-175.
|
[5] |
YAN A, HU Y, CUI J, et al. Information assurance through redundant design: A novel TNU error-resilient latch for harsh radiation environment[J]. IEEE Transactions on Computers, 2020, 69(6): 789-799.
|
[6] |
YAN A, FENG X, HU Y, et al. Design of a triple-node-upset self-recoverable latch for aerospace applications in harsh radiation environments[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 56(2): 1163-1171.
|
[7] |
NICOLAIDIS M, PEREZ R, ALEXANDRESCU D. Low-cost highly-robust hardened cells using blocking feedback transistors[C]∥26th IEEE VLSI Test Symposium. USA: IEEE, 2008.
|
[8] |
JAGANNATHAN S, LOVELESS T D, BHUVA B L, et al. Single-event tolerant flip-flop design in 40 nm bulk CMOS technology[J]. IEEE Transactions on Nuclear Science, 2011, 58(6): 3033-3037.
|
[9] |
EBARA M, YAMADA K, KOJIMA K, et al. Process dependence of soft errors induced by alpha particles, heavy ions, and high energy neutrons on flip flops in FDSOI[J]. IEEE Journal of the Electron Devices Society, 2019, 7: 817-824.
|
[10] |
YAN A, LING Y, CUI J, et al. Quadruple cross-coupled dual-interlocked-storage-cells-based multiple-node-upset-tolerant latch designs[J]. IEEE Transactions on Circuits and Systems I, 2020, 67(3): 879-890.
|
[11] |
MULLER D E, BARTKY W S. A theory of asynchronous circuits[J]. Theory of Switching, 1959. doi: 10.1007/BF01069294.
|
[12] |
EFTAXIOPOULOS N, AXELOS N, ZERVAKIS G, et al. Delta DICE: A double node upset resilient latch[C]∥2015 IEEE 58th International Midwest Symposium on Circuits and Systems (MWSCAS). USA: IEEE, 2015.
|
[13] |
WATKINS A, TRAGOUDAS S. Radiation hardened latch designs for double and triple node upsets[J]. IEEE Transactions on Emerging Topics in Computing, 2017, 8(3): 616-626.
|
[14] |
KUMAR C I, ANAND B. A highly reliable and energy-efficient triple-node-upset-tolerant latch design[J]. IEEE Transactions on Nuclear Science, 2019, 66(10): 2196-2206.
|
[15] |
YAN A, LAI C, ZHANG Y, et al. Novel low cost, double-and-triple-node-upset-tolerant latch designs for nano-scale CMOS[J]. IEEE Transactions on Emerging Topics in Computing, 2018, 9(1): 520-533.
|
[16] |
LIU X. Multiple node upset-tolerant latch design[J]. IEEE Transactions on Device and Materials Reliability, 2019, 19(2): 387-392.
|
[17] |
LI H, XIAO L, LI J, et al. High robust and cost effective double node upset tolerant latch design for nanoscale CMOS technology[J]. Microelectronics Reliability, 2019, 93: 89-97.
|