Citation: | YE Tianchun, LI Bo, LIU Fanyu, LI Duoli, LI Binhong, CHEN Siyuan. A Novel Configurable SOI Technology with Extremely High Radiation Tolerance[J]. Atomic Energy Science and Technology, 2023, 57(12): 2241-2253. DOI: 10.7538/yzk.2023.youxian.0698 |
[1] |
FLEETWOOD D M. Total ionizing dose effects in MOS and low-dose-rate-sensitive linear-bipolar devices[J]. IEEE Transactions on Nuclear Science, 2013, 60(3): 1706-1730.
|
[2] |
FLEETWOOD D M. Total-ionizing-dose effects, border traps, and 1/f noise in emerging MOS technologies[J]. IEEE Transactions on Nuclear Science, 2020, 67(7): 1216-1240.
|
[3] |
SCHWANK J R, SHANEYFELT M R, FLEETWOOD D M, et al. Radiation effects in MOS oxides[J]. IEEE Transactions on Nuclear Science, 2008, 55(4): 1833-1853.
|
[4] |
DODD P E, MASSENGILL L W. Basic mechanisms and modeling of single-event upset in digital microelectronics[J]. IEEE Transactions on nuclear Science, 2003, 50(3): 583-602.
|
[5] |
SCHWANK J R, FERLET-CAVROIS V, SHANEYFELT M R, et al. Radiation effects in SOI technologies[J]. IEEE Transactions on nuclear Science, 2003, 50(3): 522-538.
|
[6] |
WATANABE K, KATO M, OKABE T, et al. Radiation hardened silicon devices using a novel thick oxide[J]. IEEE Transactions on Nuclear Science, 1985, 32(6): 3971-3974.
|
[7] |
MRSTIK B J, HUGHES H L, GOUKER P, et al. The role of nanoclusters in reducing hole trapping in ion implanted oxides[J]. IEEE Transactions on Nuclear Science, 2003, 50(6): 1947-1953.
|
[8] |
WU Y, LUO P, ZHANG B. Aspect ratio modeling of radiation hardened 8-shape enclosed layout transistor[J]. IEEE Transactions on Nuclear Science, 2023, 70(8): 2076-2084.
|
[9] |
KELLY A T, FLEMING P R, HOLMAN W T, et al. Differential analog layout for improved ASET tolerance[J]. IEEE Transactions on Nuclear Science, 2007, 54(6): 2053-2059.
|
[10] |
JAIN A, VEGGETTI A M, CRIPPA D, et al. Radiation tolerant multi-bit flip-flop system with embedded timing pre-error sensing[J]. IEEE Journal of Solid-State Circuits, 2022, 57(9): 2878-2890.
|
[11] |
CANNON M J, KELLER A M, ROWBERRY H C, et al. Strategies for removing common mode failures from TMR designs deployed on SRAM FPGAs[J]. IEEE Transactions on Nuclear Science, 2018, 66(1): 207-215.
|
[12] |
WANG H B, LI Y Q, CHEN L, et al. An SEU-tolerant DICE latch design with feedback transistors[J]. IEEE Transactions on Nuclear Science, 2015, 62(2): 548-554.
|
[13] |
GAO Y, LU K, CHANG Y, et al. Investigation of negative bias effect on radiation hardening for double SOI technology[J]. IEEE Transactions on Nuclear Science, 2022, 69(4): 908-914.
|
[14] |
ZHENG Q, CUI J, XU L, et al. Total ionizing dose responses of forward body bias ultra-thin body and buried oxide FD-SOI transistors[J]. IEEE Transactions on Nuclear Science, 2019, 66(4): 702-709.
|
[15] |
LACOE R C. Improving integrated circuit performance through the application of hardness-by-design methodology[J]. IEEE Transactions on Nuclear Science, 2008, 55(4): 1903-1925.
|
[16] |
JAIN A, VEGGETTI A M, CRIPPA D, et al. Radiation tolerant multi-bit flip-flop system with embedded timing pre-error sensing[J]. IEEE Journal of Solid-State Circuits, 2022, 57(9): 2878-2890.
|
[17] |
CANNON M J, KELLER A M, ROWBERRY H C, et al. Strategies for removing common mode failures from TMR designs deployed on SRAM FPGAs[J]. IEEE Transactions on Nuclear Science, 2018, 66(1): 207-215.
|
[18] |
罗尹虹,龚建成,郭红霞,等. 典型CMOS器件总剂量加速试验方法验证[J]. 辐射研究与辐射工艺学报,2005,23(4):241-245.
LUO Yinhong, GONG Jiancheng, GUO Hong-xia, et al. Total dose accelerated test method to validate typical CMOS devices[J]. Journal of Radiation Research and Radiation Processing, 2005, 23(4): 241-245(in Chinese). |
[19] |
WANG Y, LIU F, LI B, et al. Dependence of temperature and back-gate bias on single-event upset induced by heavy ion in 0.2 μm DSOI CMOS technology[J]. IEEE Transactions on Nuclear Science, 2021, 68(8): 1660-1667.
|
[20] |
CHEN R M, DIGGINS Z J, MAHATME N N, et al. Effects of total-ionizing-dose irradiation on SEU- and SET-induced soft errors in bulk 40-nm sequential circuits[J]. IEEE Transactions on Nuclear Science, 2016, 64(1): 471-476.
|
[21] |
BUCHNER S, SIBLEY M, EATON P, et al. Total dose effect on the propagation of single event transients in a CMOS inverter string[J]. IEEE Transactions on Nuclear Science, 2010, 57(4): 1805-1810.
|
[22] |
GOUKER P M, GADLAGE M J, MCMORROW D, et al. Effects of ionizing radiation on digital single event transients in a 180 nm fully depleted SOI process[J]. IEEE Transactions on Nuclear Science, 2009, 56(6): 3477-3482.
|
[23] |
CAMPBELL A B, STAPOR W J. The total dose dependence of the single event upset sensitivity of IDT static RAMs[J]. IEEE Transactions on Nuclear Science, 1984, 31(6): 1175-1177.
|
[24] |
WANG Y, CHEN S, LIU F, et al. The effects of γ radiation-induced trapped charges on single event transient in DSOI technology[C]∥Monterey: IEEE International Reliability Physics Symposium (IRPS). US: IEEE, 2023.
|
[25] |
WANG Y, CHEN S, LIU F, et al. Elimination of single-event upset sensitivity for 6T SRAM in a 0.18 μm DSOI technology considering high LET heavy ions irradiation[C]∥Kansas City: IEEE Nuclear and Space Radiation Effects Conference (NSREC). US: IEEE, 2023.
|