YANG Hongyi, ZHOU Peide, WANG Mingzheng, LIU Yizhe, YANG Yong, YAN Han, AREAI Nuerlan. Comprehensive Review on Technology Development of SFRs[J]. Atomic Energy Science and Technology. DOI: 10.7538/yzk.2025.youxian.0028
Citation: YANG Hongyi, ZHOU Peide, WANG Mingzheng, LIU Yizhe, YANG Yong, YAN Han, AREAI Nuerlan. Comprehensive Review on Technology Development of SFRs[J]. Atomic Energy Science and Technology. DOI: 10.7538/yzk.2025.youxian.0028

Comprehensive Review on Technology Development of SFRs

More Information
  • Received Date: January 13, 2025
  • Revised Date: March 04, 2025
  • Accepted Date: March 18, 2025
  • Available Online: March 19, 2025
  • Sodium-cooled fast reactor (SFR) is an advanced nuclear reactor technology that employs fast neutrons and liquid metallic sodium as a coolant. The development history and current status of SFR technology were systematically reviewed in this paper. Firstly, the early international development of SFRs was reviewed, the core concepts of the generation Ⅳ nuclear energy systems were explored, and the development status of SFRs since the 21st century was analyzed. Secondly, the main development trends and key technological development pathways of SFR technology were summarized. Finally, an in-depth analysis and outlook for the future development trends of SFR were provided in China. Through the systematic summary of SFR technology, its future development direction and potential are revealed, providing important theoretical support and reference for subsequent engineering practices.

  • [1]
    谢仲生. 核反应堆物理分析[M]. 西安: 西安交通大学出版社, 2004.
    [2]
    A technology roadmap for generation Ⅳ nuclear energy systems[R]. US: DOE, 2002.
    [3]
    IAEA. Status of fast reactor research and technology development, IAEA-TECDOC-1691[R]. Vienna: IAEA, 2013.
    [4]
    Overview of fast reactors in Russia and the Former Soviet Union[R]. US: ANL, 2006.
    [5]
    Country nuclear power profiles[R]. Vienna: IAEA, 2022.
    [6]
    Russia progresses with BN-1200M sodium-cooled fast reactor development[R]. Russia: [s. n.], 2024.
    [7]
    ZEBROSKI E L. Fast reactor designs in the USA: Changing goals and options[J]. Energy, 1998, 23(7/8): 533-548.
    [8]
    TRIPLETT B S, LOEWEN E P, DOOIES B J. PRISM: A competitive small modular sodium-cooled reactor[J]. Nuclear Technology, 2012, 178(2): 186-200. doi: 10.13182/NT178-186
    [9]
    GILLELAND J, PETROSKI R, WEAVER K. The traveling wave reactor: Design and development[J]. Engineering, 2016, 2(1): 88-96. doi: 10.1016/J.ENG.2016.01.024
    [10]
    Advanced reactor demonstration program[R]. US: [s. n.], 2019.
    [11]
    TerraPower. Terrapower’s natrium project and the ARDP partnership[R]. US: ARDP, 2019.
    [12]
    BOUCHER L, MEYER M. Scenarios for the deployment of sodium-cooled fast reactors in France[R]. France: NEA, 2010.
    [13]
    VARAINE F, RODRIGUEZ G, HAMY J M, et al. ASTRID project, general overview and status progress[C]//The 4th GIF Symposium at the 8th edition of Atoms for the Future. Paris, France: [s. n.], 2018.
    [14]
    SAGAYAMA Y and NAGATA T. Progress on reactor system technology in the FaCT project toward the commercialization of fast reactor cycle system[C]//The International Conference on the Fast Reactors and Related Fuel Cycles. Kyoto, Japan: [s. n.], 2009.
    [15]
    YAMANO H, KUBO S, SHIMAKAWA Y, et al. Safety design and evaluation in a large-scale Japan sodium-cooled fast reactor[J]. Science and Technology of Nuclear Installations, 2012, 2012: 614973.
    [16]
    KALE R D. India’s fast reactor programme: A review and critical assessment[J]. Progress in Nuclear Energy, 2020, 122: 103265. doi: 10.1016/j.pnucene.2020.103265
    [17]
    徐銤. 我国快堆技术发展和核能可持续应用[J]. 现代物理知识, 2011, 23(3): 37-43.

    XU Mi. Development of fast reactor technology and sustainable application of nuclear energy in China[J]. Modern Physics, 2011, 23(3): 37-43(in Chinese).
    [18]
    徐銤. 快堆技术和中国核能的可持续发展[J]. 科学(上海), 2011, 63(2): 7-10.

    XU Mi. Fast reactor technology and the sustainable development of nuclear energy in China[J]. Science(Shanghai), 2011, 63(2): 7-10(in Chinese).
    [19]
    范仲, 徐及明. 快堆的发展和中国实验快堆工程[J]. 中国核工业, 1999(3): 44-45,48.

    FAN Zhong, XU Jiming. Development of fast reactor and China Experimental Fast Reactor project[J]. China Nuclear Industry, 1999(3): 44-45,48(in Chinese).
    [20]
    杨红义, 周培德, 喻宏, 等, 中国实验快堆(CEFR): 中国示范快堆电站总体技术方案初步考虑[M]//中国原子能科学研究院年报. 北京: 中国原子能科学研究院, 2007.
    [21]
    张东辉. 中国示范快堆技术选择探讨[J]. 中国核电, 2008, 1(2): 134-139.

    ZHANG Donghui. Technical selection for China’s demonstration fast reactor[J]. China Nuclear Power, 2008, 1(2): 134-139(in Chinese).
    [22]
    吴宏春. 快中子反应堆:我国核能发展道路上的关键一环[J]. 大学科普, 2023, 17(1): 4-6.
    [23]
    VASILYEV B A, VASYAEV A V, GUSEV D V, et al. Current status of BN-1200M reactor plant design[J]. Nuclear Engineering and Design, 2021, 382: 111384. doi: 10.1016/j.nucengdes.2021.111384
    [24]
    AIZAWA K, ANDO M. Key technologies for future sodium-cooled fast reactors[M]//Sodium-cooled Fast Reactors. [S. l.]: [s. n.], 2022: 409-626.
    [25]
    RAJ B, CHELLAPANDI P, RAO P. Sodium fast reactors with closed fuel cycle[R]. France: Taylor & Francis eBooks, 2015.
    [26]
    OWSTON J H. Transient analysis of a direct cycle nuclear heated gas turbine plant with nitrogen coolant[J]. Nuclear Engineering and Design, 2022, 397: 111928. doi: 10.1016/j.nucengdes.2022.111928
    [27]
    KITO K. SMR development overview[R]. Japan: Atomic Energy Society of Japan, 2019.
    [28]
    POPE L C , STEWART R, LUM E. Experimental breeder reactor-Ⅱ(EBR-Ⅱ)[R]. US: Intech Open, 2022.
    [29]
    娄磊, 吴宏春, 曹良志. 行波堆初步概念设计研究[C]//反应堆数值计算与粒子输运学术会议暨反应堆物理会议. 西安: 西安交通大学, 2010.
  • Related Articles

    [1]ZHOU Peide, ZHANG Xisi, HU Yun, FENG Weiwei, LIU Lin, YAN Han, WANG Fenglong, WANG Shixi, ZHANG Qiang, LI Xinyu, SONG Yingyun, XUE Fangyuan. Research on General Design Requirements of Integrated Fast Reactor[J]. Atomic Energy Science and Technology. DOI: 10.7538/yzk.2025.youxian.0122
    [2]HUO Xingkai, SONG Yingyun, MO Bu, FENG Wei, HU Yun. Physical Characteristic and Design Logics of Integrated Fast Reactor[J]. Atomic Energy Science and Technology. DOI: 10.7538/yzk.2024.youxian.0968
    [3]LIU Lin, LUO Mei, FU Qi. Research on an Integrated Fast Reactor Economic Analysis Method[J]. Atomic Energy Science and Technology. DOI: 10.7538/yzk.2024.youxian.0700
    [4]FENG Wei, LIU Yizhe, REN Yuanyuan, YANG Yong, ZHOU Peide. Development Status and Plan of Metal Fuel of Integrated Fast Reactor[J]. Atomic Energy Science and Technology. DOI: 10.7538/yzk.2024.youxian.0882
    [5]CHEN Qidong, GAO Fuhai. Development and Verification of Performance Analysis Code for Fuel Element of Sodium-cooled Fast Reactor[J]. Atomic Energy Science and Technology, 2024, 58(3): 604-613. DOI: 10.7538/yzk.2023.youxian.0477
    [6]HUO Xingkai, HU Yun, XU Li, YANG Yong. Study of Internal Breeding of Integral Fast Reactor[J]. Atomic Energy Science and Technology, 2023, 57(6): 1111-1119. DOI: 10.7538/yzk.2022.youxian.0544
    [7]MA Xiao, LIN Chao, LI Song, ZHOU Zhiwei, FENG Yuheng, ZHANG Donghui. Development of Thermal-hydraulic Analysis Code for Spent Fuel Assembly of Sodium Cooled Fast Reactor[J]. Atomic Energy Science and Technology, 2020, 54(4): 606-614. DOI: 10.7538/yzk.2019.youxian.0377
    [8]ZHANG Songmei, ZHANG Donghui. Development and Verification of Sub-channel Analysis Code for Solid Fuel Core of Sodium Cooling Fast Reactor[J]. Atomic Energy Science and Technology, 2018, 52(2): 320-325. DOI: 10.7538/yzk.2017.youxian.01142
    [9]ZHOU Zhi-wei, YANG Hong-yi, FENG Yu-heng, LI Song. Numerical Simulation and Investigation on Natural Circulation Cooling Transient Process for Spent Fuel Assembly in Sodium-cooled Fast Reactor[J]. Atomic Energy Science and Technology, 2017, 51(10): 1806-1812. DOI: 10.7538/yzk.2016.youxian.0838
    [10] , , , , , , , , , , , . Research on the general design requirements of integrated closed fuel cycle fast reactor nuclear energy system[J]. Atomic Energy Science and Technology. DOI: 10.7538/yzk.2024.youxian.0122

Catalog

    Article views (13) PDF downloads (10) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return