Processing math: 0%

超短脉冲激光辐照固体靶产生超热电子研究

超短脉冲激光辐照固体靶产生超热电子研究[J]. 原子能科学技术, 2002, 36(6): 481-481. DOI: 10.7538/yzk.2002.36.06.0481
引用本文: 超短脉冲激光辐照固体靶产生超热电子研究[J]. 原子能科学技术, 2002, 36(6): 481-481. DOI: 10.7538/yzk.2002.36.06.0481
TAO Ye-zheng, SHAN Yu-sheng, LI Ye-jun, TANG Xiu-zhang, ZHANG Hai-feng, WANG Nai-yan (China Institute of Atomic Energy, P.O.Box 275-7, Beijing 102413, China). Study on Hot Electron Generation From Solid Target Irradiated by Ultrashort Laser[J]. Atomic Energy Science and Technology, 2002, 36(6): 481-481. DOI: 10.7538/yzk.2002.36.06.0481
Citation: TAO Ye-zheng, SHAN Yu-sheng, LI Ye-jun, TANG Xiu-zhang, ZHANG Hai-feng, WANG Nai-yan (China Institute of Atomic Energy, P.O.Box 275-7, Beijing 102413, China). Study on Hot Electron Generation From Solid Target Irradiated by Ultrashort Laser[J]. Atomic Energy Science and Technology, 2002, 36(6): 481-481. DOI: 10.7538/yzk.2002.36.06.0481

超短脉冲激光辐照固体靶产生超热电子研究

详细信息
  • 中图分类号: O53225;O536

  • 摘要: 实验研究了超短脉冲激光辐照固体靶产生的超热电子温度, 所用方法是测量超热电子在固体中韧致辐射产生的硬X射线 ( >30keV)能量连续谱。中等强度 ( 1 0 16W /cm2 )、无预脉冲、红外超短脉冲( 74 4nm, 1 30fs,6mJ)、P极化激光 4 5°照射 5mm铜靶, 产生了能量为 4 0 0keV的X射线信号, 利用Maxwellian分布拟合能谱得到的超热电子温度为 85keV, 产生高能电子的主导吸收机制为真空加热。

     

    Abstract: The temperature of hot electron generated from the solid target irradiated by ultrashort pulse laser has been studied experimentally. The method is to measure the hard X-ray continuum generated by the high energy electron bremsstrahlung process in solid region. When moderate intensity, pre-pulse free, P-polarized light irradiates 5 mm Cu slab with 45°, the hard X-ray with energy up to 400 keV is detected. Fitting the experiment data by Maxwellian distribution, the temperature of hot electron is 85 keV, the main absorption mechanism for high energy electron generation is "vacuum heating".

     

  • [1] PerryMD, MourouG. TerawatttoPetawattSub picosecondLasers[J]. Science,1994,264:917~924.
    [2] TabakM, HammerJ,Glinsky,etal.IgnitionandHighGainWithUltrapowerfulLasers[J]. PhysPlasmas,1994,1(5):1626~1634.
    [3] BodnerSE, Colombant,DenisG, etal.Direct driveLaserFusion:StatusandProspects[J]. PhysPlasmas,1998,5(5):1901~1918.
    [4] GibbonP, FosterE. Short pulseLaser plasmaInteractionPlasma[J]. PhysControlFusion,1996,38:7769~7793.
    [5] BastianiS, RousseA, GeindreJP, etal.Experi mentStudyoftheInteractionofSubpicosecondLaserPulsesWithSolidTargetsofVaryingInitialScaleLengths[J]. PhysRevE, 1997,56(6):7179~7185.
    [6] ZhangP, HeJT, ChenDB, etal.EffectsofaPre pulseonγ rayRadiationProducedbyaFemtosec ondLaserWithOnly5mJEnergy[J]. PhysRevE, 1998,57(4):R3746~3748.
    [7] ChenLM, ZhangJ, DongQL, etal.HotElectronGenerationviaVacuumHeatingProcessinFem tosecondLaser solidInteraction[J]. PhysPlasmas,2001,8(6):1~5.
    [8] McCallGH. CalculationofX rayBremsstrahlungandCharacteristicLineEmissionProducedbyaMaxwellianElectronDistribution[J]. JPhysD :ApplPhys,1982,15:823~831.
    [9] 陶业争.高强度超短脉冲激光与固体等离子体相互作用研究[D]. 北京:中国原子能科学研究院,2001.
    [10] 陶业争,单玉生,王乃彦,等.单光子入射方法测量超快硬X射线能谱[J]. 原子能科学技术,2002,36(1):1~4.
    [11] EngersT, FendelW, SchulerH, etal.Second harmonicGenerationinPlasmasProducedbyFem tosecondLaserPulses[J]. PhysRevA, 1991,43(8):4564~4567.
    [12] EidmannK, Meyer terVehnJ, SchlegelT. Hy drodynamicSimulationofSubpicosecondLaserIn teractionWithSolid densityMatter[J]. PhysRevE, 2000,62(1):1202~1214.
    [13] GibbonP, BellAR. CollisionlessAbsorptioninSharp edgedPlasmas[J]. PhysRevLett,1992,68(10):1535~1538.
计量
  • 文章访问数:  1155
  • HTML全文浏览量:  0
  • PDF下载量:  938
  • 被引次数: 0
出版历程
  • 收稿日期:  2002-01-06
  • 刊出日期:  2002-11-19

目录

    /

    返回文章
    返回