Kinetics and Mechanism of Electrolysis of Oxalic Acid in Nitric Acid Solution
-
摘要: 以Pt-Ti(镀铂钛)为阳极,Ti为阴极,对HNO3介质中的H2C2O4进行恒电流电解,考察HNO3介质中H2C2O4电解动力学特性及其影响因素,并初步探讨HNO3介质中H2C2O4的电解氧化机理。研究结果表明:电流密度控制在25~37 mA/cm2、HNO3浓度为2~3 mol/L、温度为30~40 ℃时,电解效果最佳;微量金属离子(Fe3+、MnO-4、Ag+)的存在对H2C2O4的电解起催化作用,能较大提高电解速率;电解氧化法破坏H2C2O4的效率高于KMnO4蒸煮法,在工业中有潜在的应用前景。Abstract: The electrolytic destruction of oxalic acid (OA) in nitric acid solution was studied. Using platinized titanium (Pt-Ti) electrode as anode and titanium as cathode, the electrolysis of OA and the effect factors were experimentally investigated under the series of constant current density. Based on the results, the optimal operation parameters are established as follows: the current density of 25-37 mA/cm2, nitric acid concentration of 2-3 mol/L and the temperature of 30-40 ℃, meanwhile a small quantity of metallic ions, such as Fe3+, MnO-4, Ag+, can catalyze the electrolysis of OA to increase the destruction efficiency. The results of comparative experiments show that the destruction of OA with the electrochemical oxidation method is more effective than that with KMnO4 boiling oxidation method.
-
Keywords:
- kinetics ,
- oxalic acid ,
- electrolysis
-
-
[1] 姜圣阶,任风仪. 核燃料后处理工学[M]. 北京:原子能出版社,1995:201-210. [2] 李天瑞,杨松青,徐正祥. 草酸根的分光光度法的测定[J]. 冶矿工程,1994,14(2):59-61.
LI Tianrui,YANG Songqing,XU Zhengxiang. The spectrophotometric determinaton of oxalate[J]. Mining and Metallurgical Engineering,1994, 14(2): 59-61(in Chinese).[3] 查全性. 电极过程动力学导论[M]. 北京:科学出版社,1976:2. [4] 黄艳娥,琚行松,刘会媛. 电化学催化降解水中有机污染物技术[J]. 化工生产与技术,2002,9(2):14-18.
HUANG Yan’e, JU Xingsong, LIU Huiyuan. Technologies of electrochemically and catalytically degradation of organic pollutants in water[J]. Chemical Production and Technology, 2002, 9(2): 14-18(in Chinese).[5] MICHAEL K M, TALNIKAR S G. Electrolytic destruction of oxalate ions in plutonium oxalate supernatant,BARC-1996/E/017[R]. India:BARC, 1996. [6] WHEELWRIGHT E J, RYANJ L. The use of catalyzed electrolytic plutonium oxide dissolution(CEPOD) for waste treatment,PNL-SA-21775[R]. Richland:Pacific Northwest Laboratory, 1993. [7] 刘福兴,李义久. 电化学催化氧化降解有机物的机理及研究进展[J]. 四川环境,2005,24(1):56-60.
LIU Fuxing, LI Yijiu. Mechanism and development of electrochemical catalytic oxidation in degradation of organic pollutants[J]. Sichuan Environment, 2005, 24(1): 56-60(in Chinese).[8] 陈卫国,朱锡海. 电催化产生H2O2和•OH机理及在有机物降解中的应用[J]. 水处理技术, 1997, 23(6): 354-357.
CHEN Weiguo, ZHU Xihai. Mechanism of producting H2O2 and •OH by ECS and its application to organism degradation[J]. Technol Water Treat,1997,23(6):354-357(in Chinese).[9] 冯玉杰,崔玉虹,孙丽欣,等. 电化学废水处理技术及高效电催化电极的研究进展[J]. 哈尔滨工业大学学报,2004,36(4):450-455.
FENG Yujie, CUI Yuhong, SUN Lixin, et al. Development of electro-chemical technology and high efficiency catalytic electrode for wastewater treatment[J]. Journal of Harbin Institute of Technology, 2004, 36(4): 450-455(in Chinese).[10] GLATZ P, BOKELUND H. Analysis of the off-gas from dissolution of nuclear oxide and carbide fuels in nitric acid[J]. Radiochemical Acta, 1990, 51: 17-22.
计量
- 文章访问数: 520
- HTML全文浏览量: 0
- PDF下载量: 1585