Rh/γ-Al2O3催化剂上甲烷-氘化氢间的氢氘交换性能

韩军, 胡胜, 官锐, 任兴碧, 熊亮萍, 李梅

韩军, 胡胜, 官锐, 任兴碧, 熊亮萍, 李梅. Rh/γ-Al2O3催化剂上甲烷-氘化氢间的氢氘交换性能[J]. 原子能科学技术, 2009, 43(12): 1066-1070. DOI: 10.7538/yzk.2009.43.12.1066
引用本文: 韩军, 胡胜, 官锐, 任兴碧, 熊亮萍, 李梅. Rh/γ-Al2O3催化剂上甲烷-氘化氢间的氢氘交换性能[J]. 原子能科学技术, 2009, 43(12): 1066-1070. DOI: 10.7538/yzk.2009.43.12.1066
HAN Jun, HU Sheng, GUAN Rui, REN Xing-bi, XIONG Liang-ping, LI Mei. Catalytic Properties of Hydrogen-Deuterium Exchange of Methane on Rh/γ-Al2O3 Catalyst[J]. Atomic Energy Science and Technology, 2009, 43(12): 1066-1070. DOI: 10.7538/yzk.2009.43.12.1066
Citation: HAN Jun, HU Sheng, GUAN Rui, REN Xing-bi, XIONG Liang-ping, LI Mei. Catalytic Properties of Hydrogen-Deuterium Exchange of Methane on Rh/γ-Al2O3 Catalyst[J]. Atomic Energy Science and Technology, 2009, 43(12): 1066-1070. DOI: 10.7538/yzk.2009.43.12.1066

Rh/γ-Al2O3催化剂上甲烷-氘化氢间的氢氘交换性能

Catalytic Properties of Hydrogen-Deuterium Exchange of Methane on Rh/γ-Al2O3 Catalyst

  • 摘要: 采用Rh/γ-Al2O3催化剂,在固定床微型反应器上实验考察进料组成、反应温度和反应物总流量对甲烷氢氘交换的催化性能的影响。结果表明:在进料组成不变的条件下,当温度低于642 K时,甲烷的转化率随温度的升高而快速增加,当温度高于642 K时,甲烷的转化率不随温度的升高而变化;在反应温度为524~792 K、进料组成不变的条件下,当温度低于642 K时,甲烷的转化率随反应物流量的增加而明显减小,当温度高于642 K时,甲烷的转化率基本不随温度的升高而变化;在反应温度为524~792 K、反应物总流量不变的条件下,当HD/CH4流量比在1.1~2.5间变化时,甲烷的转化率随HD/CH4流量比的增加而减小。

     

    Abstract: The catalytic properties of the Rh/γ-Al2O3 catalysts for the hydrogen-deuterium exchange of methane were tested with the fixed-bed micro-reactor. The conversion of methane is increased by increased reaction temperature when the temperature is less than 642 K, the conversion of methane is not changed with increasing temperature when the temperature is higher than 642 K at the same feed composition conditions. The conversion of methane is reduced with increasing the flow of reactants when the temperature is less than 642 K, the conversion of methane is not changed with increasing temperature when the temperature is higher than 642 K at the same feed composition conditions and the temperature 524-792 K. The conversion of methane is significantly reduced with increasing the HD/CH4 flowrate ratio at HD/CH4 flowrate ratio of 1.1-2.5, and the feed composition is changed in the range of total flow of reactants under the same conditions and the temperature of 524-792 K.

     

  • [1] BIRDSELL S A, WILLMS R S. Design of an impurities detritiation system for ITER using a palladium membrane reactor[C] ∥ Symposium on FusionTechnology. Marseille, France: [s. n.], 1998: 953-956.
    [2] WILLMS R S, BIRDSELL S A. Palladium membrane reactor development at the tritium systems test assembly[J]. Fusion Technol, 1995, 28(3): 772-777.
    [3] GLUGLA M, LASSER R, DORR L. The inner deuterium/tritium fuel cycle of ITER[J]. Fusion Eng Des, 2003, 69: 39-43.
    [4] PARR R G, YANG W. Density-functional theory of atoms and molecules[M]. Oxford: Oxford University Press, 1989.
    [5] BECKE A D. Density-functional thermochemistry: Ⅲ. The role of extract exchange[J]. J Chem Phys, 1993, 98: 5 648-5 653.
    [6] BORNSCHEIN B, GLUGLA M, G NTHER K. Tritium tests with a technical PERMCAT for final clean-up of ITER exhaust gases[J]. Fusion Eng Des, 2003, 69: 51-56.
    [7] GLUGLA M, GROSS S, LASSER R, et al. Development of specific catalysts for detritiation of gases by counter current isotopic swamping[J]. Fusion Sci Technol, 2002, 41: 969-973.
    [8] KEMBALL C. The structure and stability of hydrocarbon intermediates on the surface of catalysts[J]. Catal Rev, 1971, 5(1): 33-54.
    [9] LEACH H F, MIRODATOS C, WHAN D A. The exchange of methane, ethane, and propane with deuterium on silica-supported nickel catalyst[J]. J Catal, 1980, 63: 138-151.
    [10] OTSUKA K, KOBAYASHI S, TAKENAKA S. Hydrogen-deuterium exchange studies on the decomposition of methane over Ni/SiO2[J]. J Catal, 2001, 200: 4-9.
    [11] WONG T C, BROWN L F, HALLER G L, et al. Hydrogenolysis and hydrogenation of hydrocarbons on supported Rh-Ir bimetallic catalysts[J]. J Chem Soc: Faraday Trans, 1981, 77: 519-533.
    [12] FARO A C, KEMBALL C, Jr. Influence of strong metal-support interaction on exchange with deuterium and other reactions of hydrocarbons: Part 1. Studies with Rh/TiO2 and Rh/SiO2[J]. J Chem Soc: Faraday Trans, 1995, 91: 741-748.
    [13] KHODAKOV A, BARBOUTH N, BERTHIER Y, et al. Effect of Pt particle size on H/D exchange of methane over alumina- and zeolite-supported catalysts[J]. J Chem Soc: Faraday Trans, 1995, 91: 569-573.
    [14] KHODAKOV A, BERTHIER Y, OUDAR J, et al. Deuteration of methane as a test reaction on Pt dispersion in mazzite zeolites and alumina based isomerization catalysts: Studies in surface science and catalysis[J]. Zeolites and Related Microporous Materials A, 1994, 84: 781-788.
    [15] SAGERT N H, POUTEAU R M L. The specific activity of silica supported platinum for the catalysis of hydrogen-methane deuterium exchange[J]. Can J Chem, 1973, 51: 3 588-3 595.
    [16] CECE J M, GONZALEZ R D. Studies of supported metal catalysts: Ⅱ. The effect of dispersion on methane-deuterium exchange over supported nickel[J]. J Catal, 1973, 28: 260-264.
    [17] ZADEH S M, SMITH K J. Kinetics of CH4 decomposition on supported cobalt catalysts[J]. J Catal, 1998, 176(1): 115-124.
    [18] SAKAGAMI H, OGATA S, TAKAHASHI N, et al. Effects of rhodium dispersion on catalytic behavior of Rh/active-carbon catalysts for H/D exchange reaction between CH4 and D2[J]. Chem Phys, 2001, 3: 1 930-1 934.
计量
  • 文章访问数:  729
  • HTML全文浏览量:  0
  • PDF下载量:  1125
  • 被引次数: 0
出版历程
  • 收稿日期:  1899-12-31
  • 修回日期:  1899-12-31
  • 刊出日期:  2009-12-19

目录

    /

    返回文章
    返回