基于概念格的核动力设备NN-ES故障诊断方法

NN-ES Fault Diagnosis Method in Nuclear Power Equipment Based on Concept Lattice

  • 摘要: 将神经网络与专家系统相结合,能充分发挥各自的优点。本工作利用概念格获取对象属性,从大量的原始数据中提取对象故障征兆集的核心属性、不必要属性和相对必要属性。基于这些属性,构建不同重要度的神经网络,使网络学习速度大幅提高,判断准确。为了更好地提高核动力设备故障诊断的准确性,采用基于规则推理的专家系统,对各神经网络融合后的诊断结果进行验证诊断。为验证该方法的有效性,以核动力设备典型故障为例,进行了仿真实验研究。仿真实验结果表明,将基于概念格属性约简理论构建的神经网络与专家系统邦联的诊断方法引入核动力设备故障诊断中是可行的,并且具有网络学习针对性强、计算量小、诊断结果可靠等特点。

     

    Abstract: In order to improve the fault diagnosis accuracy of nuclear power plant, neural network and expert systems were combined to give full play to their advantages. In this paper, the concept lattice was applied to get the object properties, extracting the core attributes, dispensable attributes and relative necessary attributes from a large number raw data of fault symptoms. Based on these attributes, neural networks with different levels of importance were designed to improve the learning speed and diagnosis accuracy, and the diagnosis results of the neural networks were verified by using rule-based reasoning expert system. To verify the accuracy of this method, some simulation experiments about the typical faults of nuclear power plant were conducted. And the simulation results show that it is feasible to diagnose nuclear power plant faults with the confederation diagnosis methods combined the neural networks based on the concept lattice theory and expert system, with the distinctive features such as the efficiency of neural network learning, less calculation and reliability of diagnosis results and so on.

     

/

返回文章
返回