反应堆超临界CO2 Brayton循环特性

Features of Supercritical Carbon Dioxide Brayton Cycle Coupled With Reactor

  • 摘要: 为达到满意的循环效率,目前的气冷堆氦气透平循环技术需较高的循环最高温度,即需更高的堆芯出口温度,对反应堆压力壳及燃料元件材料有较高要求,同时由于氦气本身的性质,对透平制造也提出了新的要求;而采用CO2作为循环工质,可保证在热效率相当情况下,降低循环温度,减小透平体积等,提高反应堆的安全性及经济性。根据热力学定律,建立了超临界CO2透平循环计算模型,并对该动力循环进行了详细的特性研究,得到了决定循环效率的各个参数,并分析了这些参数对循环效率的影响。结果表明,超临界CO2动力循环在相对氦气循环较低的温度下可达到满意的效率,CO2是一种理想的循环工质。

     

    Abstract: In order to obtain acceptable cycle efficiency, current helium gas turbine power cycle technology needs high cycle temperature which means that the cycle needs high core-out temperature. The technology has high requirements on reactor structure and fuel elements materials, and also on turbine manufacture. While utilizing CO2 as cycle working fluid, it can guarantee to lower the cycle temperature and turbo machine volume but achieve the same cycle efficiency, so as to enhance the safety and economy of reactor. According to the laws of thermodynamics, a calculation model of supercritical CO2 power cycle was established to analyze the feature, and the decisive parameters of the cycle and also investigate the effect of each parameter on the cycle efficiency in detail were obtained. The results show that supercritical CO2 power cycle can achieve quite satisfied efficiency at a lower cycle highest temperature than helium cycle, and CO2 is a promising working fluid.

     

/

返回文章
返回