Ag2+与乙酸的化学反应动力学

李高亮, 何辉, 唐洪彬, 李峰峰

李高亮, 何辉, 唐洪彬, 李峰峰. Ag2+与乙酸的化学反应动力学[J]. 原子能科学技术, 2010, 44(增刊): 75-79. DOI: 10.7538/yzk.2010.44.suppl.0075
引用本文: 李高亮, 何辉, 唐洪彬, 李峰峰. Ag2+与乙酸的化学反应动力学[J]. 原子能科学技术, 2010, 44(增刊): 75-79. DOI: 10.7538/yzk.2010.44.suppl.0075
LI Gao-liang, HE Hui, TANG Hong-bin, LI Feng-feng. Reaction Kinetics Between Ag2+ and Acetic Acid in Nitric Acid Medium[J]. Atomic Energy Science and Technology, 2010, 44(增刊): 75-79. DOI: 10.7538/yzk.2010.44.suppl.0075
Citation: LI Gao-liang, HE Hui, TANG Hong-bin, LI Feng-feng. Reaction Kinetics Between Ag2+ and Acetic Acid in Nitric Acid Medium[J]. Atomic Energy Science and Technology, 2010, 44(增刊): 75-79. DOI: 10.7538/yzk.2010.44.suppl.0075

Ag2+与乙酸的化学反应动力学

Reaction Kinetics Between Ag2+ and Acetic Acid in Nitric Acid Medium

  • 摘要: 采用分光光度法研究了硝酸介质中Ag2+与乙酸(HAc)的化学反应动力学。考察了HAc浓度、酸度、NO3-浓度和温度对Ag2+氧化HAc的影响。结果表明:提高HAc浓度、Ag2+浓度、温度和降低酸度均有利于加快Ag2+与乙酸的反应速率,而NO3-对反应速率的影响不大。得到的反应动力学方程为:-dc(Ag2+)/dt=kc(Ag2+)c(HAc)c-1(H+),25 ℃时,反应的速率常数为(61015)(mol/L)-1•min-1,反应活化能Ea=(48.8±3.5)kJ•mol-1。

     

    Abstract: The reaction kinetics between Ag2+ and acetic acid in nitric acid medium was studied by spectrophotometry. The effects of concentrations of acetic acid (HAc), H+, NO3- and temperature on the reaction were investigated, and the rate equation and the corresponding parameters were obtained. The rate equation is determined as follows: -dc(Ag2+)/dt= kc(Ag2+)c(HAc)c-1(H+), where the rate constant is (61015) (mol/L)-1•min-1 at 25 ℃, and the activation energy is (48.8±3.5) kJ•mol-1. The reduction rate of Ag2+ can be improved by either increasing the HAc concentration and the temperature, or decreasing the concentration of nitric acid. However, the effect of concentration of NO3- on the reduction rate of Ag2+ is negligible.

     

  • [1] KOLTUNOV V S, MARCHENKO V I. Stabili- zation of Pu and Np valences in Purex process: Problems and outlook[C] ∥The 5th International Nuclear Conference on Recycling, Conditioning and Disposal. France: The French Nuclear Society and the European Nuclear Society, 1998: 425-431.
    [2] TAYLOR R J, MAY I, WALLWORK A L. The applications of formo-and acetohydroxamic acids in nuclear fuel reprocessing[J]. J All Comp, 1998, 271(273): 271-273, 534-537.
    [3] VANDEGRIFT G F, REGALBUTO M C, AASE S. Designing and demonstration of the UREX+Process using spent nuclear fuel[R]. [S. l.] : [s. n.], 2004.
    [4] THOMPSON M C, NORATO M A. Demonstration of the UREX solvent extration process with dresden reactor fuel solution, WSRC-TR-2002-0044[R]. USA: US Department of Energy, 2002.
    [5] RUDISILL T S, THOMPSON M C. Demonstration of the UREX solvent extraction process with dresden reactor fuel solution. WSRC-TR-2002- 00444[R]. [S. l.] : [s. n.], 2002.
    [6] ALYAPYSHEV M, PAULENOVA A. Hydrolysis of aceto-hydroxamic acid under UREX+ conditions, ANS-2007 1873[R]. USA: American Nuclear Society, 2007.
    [7] KARRAKER D G. Radiation chemistry of acetohydroxamic acid in the urex process, WSRC-TR-2002-00283[R]. USA: US Department of Energy, 2002.
    [8] NAGAHAMA K, JIANG T X. VLE K-Values of dilute HCl and organic acids in nitric acid-water solutions[J]. Fluid Phase Equilibria, 1989, 53: 261-266.
    [9] LEI Zhigang, LI Chengyue, LI Yingxia. Separation of acetic acid and water by complex extractive distillation[J]. Sep & Pur Tech, 2004, 36: 131-138.
    [10] GANGULY S K, GOSWAMI A N. Surface diffusion kenetics in the adsorbtion of acetic acid on activated carbon[J]. Sep Sci & Tech, 1996, 31: 1 267-1 278.
    [11] MAURER G, SCHUNK A. On the influence of some strong electrolytes on the partitioning of acetic acid to aqueous/organic two-phase systems in the presence of tri-n-octylamine[J]. Fluid Phase Equil, 2006, 239: 223-239.
    [12] VEDPRAKASH S M, VIJAYKUMAR V M, JYESHTHARAJ B. Wet air oxidation[J]. Ind Eng Chem Res, 1995, 34: 2-48.
    [13] GALLA U, KRITZER P, BRINGMANN J, et al. Process for total degradation of organic wastes by mediatedelectro-oxidation[J]. Chem Eng Technol, 2000, 23(3): 230-233.
    [14] BRINGMANN J, EBERT K, GALLA U, et al. Electrochemical mediators for total oxidation of chlorinated hydrocarbons: Formation Kinetics of Ag(Ⅱ), Co(Ⅲ), and Ce(Ⅳ)[J]. Journal of Applied Electrochemistry, 1995, 25: 846-851.
    [15] 成章,王京刚,文明芬. 间接电化学氧化体系处理废有机溶剂[J]. 北京化工大学学报,2008,35(1):14-17.
    CHENG Zhang, WANG Jinggang, WEN Mingfen. Treatment of spent solvent by mediated elec- trochemical oxidation[J]. Journal of Beijing Univer- sity of Chemical Technology: Natural Science Edition, 2008, 35(1): 14-17(in Chinese).
    [16] ZHANG Yuan. Production and degeneration of silver (Ⅱ) used for decontamination of facilities contaminated by PuO2 and decomposition of radiological organic waste[C] ∥WM’01 Conference. Tucson: [s. n.], 2001.
计量
  • 文章访问数:  688
  • HTML全文浏览量:  0
  • PDF下载量:  1320
  • 被引次数: 0
出版历程
  • 收稿日期:  1899-12-31
  • 修回日期:  1899-12-31
  • 刊出日期:  2010-10-20

目录

    /

    返回文章
    返回