核电站分布式智能故障诊断系统研究与设计

Research and Design of Distributed Intelligence Fault Diagnosis System in Nuclear Power Plant

  • 摘要: 为进一步减少核电站运行中发生故障后的误操作,根据核电站各设备功能分布及核电站数字化仪控系统分布式控制的特点,研究设计了核电站分布式状态监测与故障诊断系统。依据分解综合的诊断思想,提出模糊神经网络和RBF神经网络进行分布式局部诊断和多源信息融合技术进行全局综合诊断的方法。仿真实验结果表明,该诊断系统能够正确诊断压水堆核电站多个典型故障,并能为核电站运行提供有效的帮助信息。

     

    Abstract: In order to further reduce the misoperation after the faults occurring of nuclear power plant, according to the function distribution of nuclear power equipment and the distributed control features of digital instrument control system, a nuclear power plant distributed condition monitoring and fault diagnosis system was researched and designed. Based on decomposition-integrated diagnostic thinking, a fuzzy neural network and RBF neural network was presented to do the distributed local diagnosis and multi-source information fusion technology for the global integrated diagnosis. Simulation results show that the developed distributed status monitoring and fault diagnosis system can diagnose more typical accidents of PWR to provide effective diagnosis and operation information.

     

/

返回文章
返回