钙钛锆石基组合矿物固溶铈的研究

桂成梅, 滕元成, 任雪潭, 宋子键

桂成梅, 滕元成, 任雪潭, 宋子键. 钙钛锆石基组合矿物固溶铈的研究[J]. 原子能科学技术, 2011, 45(11): 1294-1299. DOI: 10.7538/yzk.2011.45.11.1294
引用本文: 桂成梅, 滕元成, 任雪潭, 宋子键. 钙钛锆石基组合矿物固溶铈的研究[J]. 原子能科学技术, 2011, 45(11): 1294-1299. DOI: 10.7538/yzk.2011.45.11.1294
GUI Cheng-mei, TENG Yuan-cheng, REN Xue-tan, SONG Zi-jian. Research of Solidifying Cerium in Assembled Minerals of Zirconolite-Based[J]. Atomic Energy Science and Technology, 2011, 45(11): 1294-1299. DOI: 10.7538/yzk.2011.45.11.1294
Citation: GUI Cheng-mei, TENG Yuan-cheng, REN Xue-tan, SONG Zi-jian. Research of Solidifying Cerium in Assembled Minerals of Zirconolite-Based[J]. Atomic Energy Science and Technology, 2011, 45(11): 1294-1299. DOI: 10.7538/yzk.2011.45.11.1294

钙钛锆石基组合矿物固溶铈的研究

Research of Solidifying Cerium in Assembled Minerals of Zirconolite-Based

  • 摘要: 以ZrSiO4、CaCO3、TiO2、Al2O3、Ce2C6O12•10H2O为原料,采用固相反应工艺合成掺Ce钙钛锆石基钛酸盐组合矿物。利用XRD、BSE、EDS等分析方法,研究组合矿物的制备及其对Ce的固溶。结果表明:合成掺Ce钙钛锆石基钛酸盐组合矿物的较佳温度为1 230 ℃;组合矿物的主要晶相为钙钛锆石固溶体,次要晶相是榍石和CaTiO3的固溶体;CeO2在组合矿物中的最大固溶量为21.39%;组合矿物固溶Ce4+的机制较复杂,Ce4+固溶在Ca2+位或Zr4+位,Al3+固溶在Ti4+位对Ce4+固溶在Ca2+位有电价补偿作用。

     

    Abstract: The assembled minerals of zirconolite-based doped cerium were synthesized by solid-reaction, using zircon, calcium carbonate, titanium dioxide, alumina and oxalic-acid cerium as raw materials. The preparation of assembled minerals and solidifying cerium in it were researched by means of XRD, BSE, EDS and so on. The results indicate that the better synthesis temperature of the assembled titanate minerals of zirconolite-based doped cerium is 1 230 ℃. The main crystal phase is zirconolite, the secondary phases are sphene and perovskite. The maximum solidifying content of cerium dioxide is 21.39% in the assembled minerals. The mechanism of solidifying cerium in assembled minerals is comparatively complex. Ce4+ replaces the lattice site of Ca2+ or Zr4+, and Al3+ replaces the lattice site of Ti4+ as an electro-valence compensation of Ce4+ replacing Ca2+ lattice site.

     

  • [1] EWING R C. Nuclear waste forms for actinides[J]. National Academy of Science Colloquium, 1999, 3(3): 3 432-3 439.
    [2] DONALD I W, METCALFE B L, TAYLOR R N J. Review: The immobilization of high level radioactive wastes using ceramics and glasses[J]. Mater Sci, 1997, 22(32): 5 851-5 887.
    [3] 朱鑫璋,罗上庚,汪德熙. 锕系元素的人造岩石固化[J]. 核科学与工程,1997,17(2):173-178.
    ZHU Xinzhang, LUO Shanggeng, WANG Dexi. Synroc for actinides immolilization[J]. Chinese Journal of Nuclear Science and Engineering, 1997, 17(2): 173-178(in Chinese).
    [4] VANCE E R, LUMPKIN G R, CARTER M L. Incorporation of uranium in zirconolite (CaZrTi2O7)[J]. Journal of the American Ceramic Society, 2002, 85(7): 1 853-1 859.
    [5] 朱鑫璋,罗上庚,汤宝龙,等. 富钙钛锆石型人造岩石固化模拟锕系废物研究[J]. 核科学与工程,1999,19(2):182-186,163.
    ZHU Xinzhang, LUO Shanggeng, TANG Baolong, et al. Zirconolite rich synroc for immobilization of simulated actinides[J]. Chinese Journal of Nuclear Science and Engineering, 1999, 19(2): 182-186, 163(in Chinese).
    [6] 何涌. 高放废液玻璃固化体和矿物固化体性质的比较[J]. 辐射防护,2001,21(1):43-47.
    HE Yong. Comparison of the properties of glass and mineral hosts for high-level nuclear waste[J]. Radialization Protection, 2001, 21(1): 43-47(in Chinese).
    [7] 崔春龙,卢喜瑞,张东,等. 含放射性核素天然榍石的稳定性研究[J]. 矿物岩石,2008,28(4):7-12.
    CUI Chunlong, LU Xirui, ZHANG Dong, et al. Stability of natural sphenes with radioactive elements[J]. Journal of Mineralogy and Petrology, 2008, 28(4): 7-12(in Chinese).
    [8] MUTHURAMAN M, PATIL K C. Synthesis, properties, sintering and microstructure of sphene, CaTiSiO5: A comparative study of coprecipitation, sol-gel and combustion processes[J]. Mater Res Bull, 1998, 33(4): 655-661.
    [9] 滕元成,周时光,卢忠远. 钙钛锆石和榍石的合成及烧结[J]. 硅酸盐学报,2006,34(7):810-814.
    TENG Yuancheng, ZHOU Shiguang, LU Zhongyuan. Synthesis and sintering of zironolite and sphene[J]. Journal of the Chinese Ceramic Society, 2006, 34(7): 810-814(in Chinese).
    [10] 徐会杰,李玉香,滕元成,等. 钕在钙钛锆石和榍石组合矿物中的固溶机制[J]. 原子能科学技术,2010,44(1):20-24.
    XU Huijie, LI Yuxiang, TENG Yuancheng, et al. Mechanism of solidification neodymium in assorted minerals of zironolite and sphene[J]. Atomic Energy Science and Technology, 2010, 44(1): 20-24(in Chinese).
    [11] 滕元成,曾冲盛,任雪潭,等. 合成榍石的化学稳定性[J]. 原子能科学技术,2010,44(1):14-19.
    TENG Yuancheng, ZENG Chongsheng, REN Xuetan, et al. Chemical durability of synthesized sphene[J]. Atomic Energy Science and Technology, 2010, 44(1): 14-19(in Chinese).
    [12] 滕元成,曾冲盛,窦天军,等. 榍石固溶体的稳定性[J]. 四川大学学报:工程版,2010,42(1):114-118.
    TENG Yuancheng, ZENG Chongsheng, DOU Tianjun, et al. The stability of solid solution sphene[J]. Journal of Sichuan University: Engineering Science Edition, 2010, 42(1): 114-118(in Chinese).
    [13] 滕元成,赵伟,李玉香,等. 铈在榍石固溶体中固溶量的研究[J]. 原子能科学技术,2010,44(10):1 173-1 178.
    TENG Yuancheng, ZHAO Wei, LI Yuxiang, et al. Solid-soluted content of cerium in solid solution of sphene[J]. Atomic Energy Science and Technology, 2010, 44(10): 1 173-1 178(in Chinese).
计量
  • 文章访问数:  552
  • HTML全文浏览量:  0
  • PDF下载量:  1105
  • 被引次数: 0
出版历程
  • 收稿日期:  1899-12-31
  • 修回日期:  1899-12-31
  • 刊出日期:  2011-11-19

目录

    /

    返回文章
    返回