基于嵌入蒙特卡罗模拟计算的遗传算法对多重测量装置3He管排布的优化

Assignment of 3He Tubes in Neutron Multiplicity Counter by Genetic Algorithm Based on Monte Carlo Code

  • 摘要: 为提高NDA方法测试分析精度,降低统计误差,在研制中子多重测量装置时通常将探测效率作为重要的设计目标。本文将蒙特卡罗模拟嵌入遗传算法中,以假想的90根3He管中子多重测量装置为例,利用该方法对其3He管分布进行理论模拟和优化,在短时间内求出探测效率为37%的最优排布。同时,利用蒙特卡罗模拟了随机抽样产生的1 000个有效排布,并对随机抽样分析与遗传算法结果进行比对分析。结果表明:利用遗传算法确定3He管分布是快速有效的。

     

    Abstract: A method for optimizing the most effective neutron multiplicity counter was proposed. The method used program of genetic algorithm and Monte Carlo method which coded by C++ to get 3He tubes assignment to maximize counter efficiency. The results validate the genetic algorithm based on Monte Carlo code for neutron calculations of more than 1 000 valid assignment of 3He is effective.

     

/

返回文章
返回