Gd1.6Nd0.4Zr2O7烧绿石的快速合成及其组织结构研究

谢华, 唐敬友

谢华, 唐敬友. Gd1.6Nd0.4Zr2O7烧绿石的快速合成及其组织结构研究[J]. 原子能科学技术, 2012, 46(4): 390-395. DOI: 10.7538/yzk.2012.46.04.0390
引用本文: 谢华, 唐敬友. Gd1.6Nd0.4Zr2O7烧绿石的快速合成及其组织结构研究[J]. 原子能科学技术, 2012, 46(4): 390-395. DOI: 10.7538/yzk.2012.46.04.0390
XIE Hua, TANG Jing-you. Rapid Synthesis and Microstructural Characterization of Gd1.6Nd0.4Zr2O7 Pyrochlore[J]. Atomic Energy Science and Technology, 2012, 46(4): 390-395. DOI: 10.7538/yzk.2012.46.04.0390
Citation: XIE Hua, TANG Jing-you. Rapid Synthesis and Microstructural Characterization of Gd1.6Nd0.4Zr2O7 Pyrochlore[J]. Atomic Energy Science and Technology, 2012, 46(4): 390-395. DOI: 10.7538/yzk.2012.46.04.0390

Gd1.6Nd0.4Zr2O7烧绿石的快速合成及其组织结构研究

Rapid Synthesis and Microstructural Characterization of Gd1.6Nd0.4Zr2O7 Pyrochlore

  • 摘要: 为探索Gd2Zr2O7烧绿石快速固化高放废物中锕系核素的新途径,实验用高温高压固相反应法在3~4 GPa压力、1 573~1 673 K温度范围内合成了Gd1.6Nd0.4Zr2O7烧绿石固化体,并利用X射线衍射仪、扫描电镜对样品进行了分析。结果表明:高温高压固相反应法可在极短时间(15 min)内合成完全固溶的Gd1.6Nd0.4Zr2O7立方烧绿石固化体,较常用制备方法(一般合成时间不低于48 h)快近200倍;用该技术合成的样品在常温常压下的相转变温度及压力得以显著提高,烧绿石相更趋稳定;样品晶格常数随Nd含量的增加及合成温度的升高而逐渐增大,随合成压力的增加而逐渐减小。这种快速高效的合成方法为未来开展高放核素的工业固化提供了一种新的技术途径和基本数据参考。

     

    Abstract: In order to explore a rapid synthesis method for Gd2Zr2O7 pyrochlore immobilizing actinide elements from radioactive wastes, Gd1.6Nd0.4Zr2O7 pyrochlore was synthesized via solid state reactions for 15 min under high pressure (3-4 GPa) and high temperature (1 573-1 673 K). The products were characterized by powder X-ray diffraction and scanning electron microscopy. The results indicate that among all the compositions, Gd1.6Nd0.4Zr2O7 solid solution with a cubic pyrochlore structure is synthesized within only 15 min. This period is approximate 200 times faster than other common preparation methods with synthesis time of not less than 48 h. The phase transition pressure and temperature of the samples are expanded under high pressure and temperature conditions. The stability of the pyrochlore phase is found to increase. The lattice parameters of Gd1.6Nd0.4Zr2O7 solid solutions gradually increase with the neodymium content and the synthesis temperature, and decrease with the increase of the synthesis pressure.

     

  • [1] WEBER W J, EWIN G R C. Plutonium immobilization and radiation effects[J]. Science, 2000, 289: 2 051-2 052.
    [2] PATWE S J, TYAGI A K. Solubility of Ce4+ and Sr2+ in the pyrochlore lattice of Gd2Zr2O7 for simulation of Pu and alkaline earth metal[J]. Ceram Intern, 2006, 32(5): 545-548.
    [3] MANDAL B P, TYAGI A K. Preparation and high temperature-XRD studies on a pyrochlore series with the general composition Gd2-xNdxZr2O7[J]. Journal of Alloys and Compounds, 2007, 437(1-2): 260-263.
    [4] LIU Zhanguo, OUYANG Jiahu, ZHOU Yu, et al. Preparation and microstructural characterization of (Nd1-xGdx)2(Ce1-xZrx)2O7 solid[J]. Ceram Int, 2009, 35(6): 2 387-2 392.
    [5] NSTREN C, JARDIN R, SOMERS J, et al. Actinide incorporation in a zirconia based pyrochlore (Nd1.8An0.2)Zr2O7-x (An=Th, U, Np, Pu, Am)[J]. J Solid State Chem, 2009, 182(1): 1-7.
    [6] KUTTY K V G, ASUVATHRAMAN R, MADHAVAN R R, et al. Actinide immobilization in crystalline matrix: A study of uranium incorporation in gadolinium zirconate[J]. J Phys Chem Solids, 2005, 66(2-4): 596-601.
    [7] SYKORA R E, RAISON P E, HAIRE R G. Self-irradiation induced structural changes in the transplutonium pyrochlores An2Zr2O7(An=Am, Cf)[J]. J Solid State Chem, 2005, 178(2): 578-583.
    [8] LIAN J, YUDINTSEV S V, STEFANOVSKY S V, et al. Ion beam irradiation of U, Th and Cedoped pyrochlores[J]. J Alloys Compd, 2007, 444-445: 429-433.
    [9] EWING R C. The design and evaluation of nuclear-waste forms: Clues from mineralogy[J]. Canad Miner, 2001, 39(3): 697-715.
    [10] YUNDINSEV S V, LUKINYKH A N, TOMILIN A A, et al. Alpha-decay induced amorphization of Cm-doped Gd2Ti2O7[J]. J Nucl Mater, 2009, 385(2-3): 200-203.
    [11] TODOROV I T, PURTON J A, ALLAN N, et al. Simulation of radiation damage in gadolinium pyrochlores[J]. J Phys Condens Matter, 2006, 18(7): 2 217-2 233.
    [12] MORENO K J, RODRIGO R S, FUENTES A F, et al. Direct synthesis of A2(Ti1-yZry)2O7(A=Gd3+, Y3+) solid solutions by ball milling constituent oxides[J]. J Alloy Compd, 2005, 390(2): 230-235.
    [13] EHARA T, KOTO K, KANAMARU F. Stability and antiphase domain structure of the pyrochlore solid solution in the ZrO2Gd2O3 system[J]. Solid State Ionics, 1987, 23(1-2): 137-143.
    [14] 唐敬友,陈晓谋,潘社奇,等. 立方烧绿石Gd2Zr2O7的高温高压合成[J]. 原子能科学技术,2010,44(4):394-399.
    TANG Jingyou, CHEN Xiaomou, PAN Sheqi, et al. Synthesis of Gd2Zr2O7 pyrochlore with cubic structure at high pressure and high temperature conditions[J]. Atomic Energy Science and Technology, 2010, 44(4): 394-399(in Chinese).
    [15] BOCCACCINI A R, BERTHIER T, SEGLEM S. Encapsulated gadolinium zirconate pyrochlore particles in soda borosilicate glass as novel radioactive waste form[J]. Ceramics International, 2007, 33(7): 1 231-1 235.
    [16] 杨建文,汤宝龙,罗上庚. 富烧绿石型人造岩石固化模拟锕系元素废液的研究[J]. 核化学与放射化学,2000,22(3):178-183.
    YANG Jianwen, TANG Baolong, LUO Shanggeng. Immobilization of simulation actindes in pyrochlore-rich synroc[J]. Journal of Nuclear and Radiochemistry, 2000, 22(3): 178-183(in Chinese).
    [17] ROHRER G S. Structure and bonding in crystalline materials[M]. Cambridge: Cambridge University Press, 2004.
    [18] KUTTY K V G, ASUVATHRAMAN R, MADHAVAN R R, et al. Actinide immobilization in crystalline matrix: A study of uranium incorporation in gadolinium zirconate[J]. Journal of Physics and Chemistry of Solids, 2005, 66(2-4): 596-601.
    [19] KUMAR N R, CHANDRA N V, SHEKAR C, et al. Pressure induced structural transformation of pyrochlore Gd2Zr2O7[J]. Solid State Commun, 2008, 147(9-10): 357-359.
    [20] SUBRAMANIAN M A, ARAVAMUDAN G, RAO G V S. Oxide pyrochlores: A review[J]. Prog Solid State Chem, 1983, 15(2): 55-143.
计量
  • 文章访问数:  698
  • HTML全文浏览量:  0
  • PDF下载量:  1792
  • 被引次数: 0
出版历程
  • 收稿日期:  1899-12-31
  • 修回日期:  1899-12-31
  • 刊出日期:  2012-04-19

目录

    /

    返回文章
    返回