直动电磁阀线圈温升实验研究

Experimental Study on Coil of Direct Action Solenoid Valve With Temperature Increasing

  • 摘要: 控制棒水压驱动技术是由清华大学核能与新能源技术研究院发明的具有自主知识产权的一项新型专利技术。组合阀是该项技术的关键部件,而组合阀是由3个直动电磁阀组成,因此,电磁阀的性能直接影响组合阀的性能,从而影响控制棒水压驱动技术的运行性能。本文就控制棒水压驱动系统运行过程中所出现的工况,对其直动电磁阀线圈进行了温升实验研究,并运用ANSYS软件进行了理论分析。分析结果表明:在电流增大情况下,线圈温度均会增大;线圈内壁温度高于外壁温度;线圈中间温度高于边缘温度。通过线圈温升研究可进一步优化直动电磁阀的设计。

     

    Abstract: Hydraulic control rod drive technology (HCRDT) is a newly invented patent and Institute of Nuclear and New Energy Technology of Tsinghua University owns HCRDT’s independent intellectual property rights. The integrated valve which is made up of three direct action solenoid valves is the key part of this technology, so the performance of the solenoid valve directly affects the function of the integrated valve and the HCRDT. Based on the conditions occurring in the operation of the control rod hydraulic drive system, the coil of the direct action solenoid valve with temperature increasing was studied by the experiment and analyzed by ANSYS code. The result shows that the temperature of the coil for the solenoid valve increases with the current increasing firstly. The temperature of the inner wall of the coil is higher than that of the exterior wall. The temperature of the middle coil is higher than that of the edge of the coil. The design of the direct action solenoid valve can be optimized.

     

/

返回文章
返回