龙格库塔方法在求解瞬态中子扩散方程中的应用

Application of Runge-Kutta Method to Solve Transient Neutron Diffusion Equation

  • 摘要: 本工作开发了NGFMN-K程序求解瞬态中子扩散方程。空间离散采用第2类边界条件节块格林函数方法,时间离散分别选取向后欧拉格式和四阶精度对角线隐式龙格库塔(DIRK)格式。对DIRK格式采用嵌入三阶精度格式估计截断误差实现时间步长自调节。数值验证结果表明,两种格式的计算结果与参考程序结果符合很好,对于剧烈瞬变情况,DIRK格式较向后欧拉格式更为精确、高效。

     

    Abstract: NGFMN-K code was developed to solve transient neutron diffusion equations. Nodal Green’s function method based on the second boundary condition was utilized for spatial discreteness. Backward Euler (BE) and a fourth-order accurate diagonally implicit Runge-Kutta (DIRK) method were used for temporal discreteness. Automatic time step control was achieved by embedding a third-order accurate Runge-Kutta solution to estimate the truncation error for DIRK. Numerical evaluations show that results of two methods agree well with reference solution, and DIRK is more accurate and efficient than BE, especially in severe transient.

     

/

返回文章
返回