烧绿石(La1-yNdy)2Zr2O7模拟固化241Am的晶体结构稳定性研究

谢华, 王烈林, 江阔, 米国源, 龙勇, 邓超

谢华, 王烈林, 江阔, 米国源, 龙勇, 邓超. 烧绿石(La1-yNdy)2Zr2O7模拟固化241Am的晶体结构稳定性研究[J]. 原子能科学技术, 2013, 47(5): 724-729. DOI: 10.7538/yzk.2013.47.05.0724
引用本文: 谢华, 王烈林, 江阔, 米国源, 龙勇, 邓超. 烧绿石(La1-yNdy)2Zr2O7模拟固化241Am的晶体结构稳定性研究[J]. 原子能科学技术, 2013, 47(5): 724-729. DOI: 10.7538/yzk.2013.47.05.0724
XIE Hua, WANG Lie-lin, JIANG Kuo, MI Guo-yuan, LONG Yong, DENG Chao. Stability Study on Crystal Structure of (La1-yNdy)2Zr2O7 Pyrochlore Simulated Immobilizing 241Am[J]. Atomic Energy Science and Technology, 2013, 47(5): 724-729. DOI: 10.7538/yzk.2013.47.05.0724
Citation: XIE Hua, WANG Lie-lin, JIANG Kuo, MI Guo-yuan, LONG Yong, DENG Chao. Stability Study on Crystal Structure of (La1-yNdy)2Zr2O7 Pyrochlore Simulated Immobilizing 241Am[J]. Atomic Energy Science and Technology, 2013, 47(5): 724-729. DOI: 10.7538/yzk.2013.47.05.0724

烧绿石(La1-yNdy)2Zr2O7模拟固化241Am的晶体结构稳定性研究

Stability Study on Crystal Structure of (La1-yNdy)2Zr2O7 Pyrochlore Simulated Immobilizing 241Am

  • 摘要: 为研究241Am在La2Zr2O7烧绿石中的固化行为及其对烧绿石晶体结构稳定性的影响,实验选用Nd作为241Am的模拟物,采用Sol-喷雾热解法合成了(La1-yNdy)2Zr2O7(0.0≤y≤1.0)系列样品,并借助X射线衍射和振动光谱手段对样品的晶体结构稳定性进行了研究。实验结果表明:随着Nd掺杂量的增加,O48f位置参数x48f和I(111) /I(222)均呈规律性增大,Raman谱逐渐展宽,IR谱发生蓝移,所有结果均证实用Nd不断替换La将导致烧绿石晶体结构有序化程度逐渐降低。另外,实验发现掺杂量y≈0.8是烧绿石晶体结构发生几何相变的逾渗阈值,超过该阈值有序的烧绿石结构将发生突变进而加速向无序萤石结构转变,该实验结果可为(La1-yAmy)2Zr2O7固溶体的结构稳定性研究提供参考。

     

    Abstract: In order to study immobilization behavior and the effect of 241Am to crystal structure stability of pyrochlore, Nd was used as surrogate element for 241Am. A series of (La1-yNdy)2Zr2O7(0.0≤y≤1.0) samples were synthesized by Sol-spray pyrolysis method. The crystal structure stability was characterized by powder X-ray diffraction and vibration spectrum. The results indicate that with the increase of Nd concentration in (La1-yNdy)2Zr2O7, the values of the x48f parameter of the O48f and I(111)/I(222) increase regularly and Raman spectrum gradually broadens as well as IR spectrum happens blue shift, which proves that the ordering degree of crystal structure in (La1-yNdy)2Zr2O7 gradually reduces with Nd constantly replacing La. In addition, experiments find that y≈0.8 is of the percolation threshold value to pyrochlore happening geometric phase transition, and order pyrochlore structure will have a sudden change and quickly transforms to the disordered fluorite structure with more than the threshold value. The experiment results can provide a reference to (La1-yAmy)2Zr2O7 solid solution structure stability.

     

  • [1] WEBER W J, EWIN G R C. Plutonium immobilization and radiation effects[J]. Science, 2000, 289: 2051-2052.
    [2] LEEA Y H, SHEUB H S, DENGA J P, et al. Preparation and fluorite-pyrochlore phase transformation in Gd2Zr2O7[J]. Journal of Alloys and Compounds, 2009, 487(1-2): 595-598.
    [3] BRENDAN J K, QING Z. Neutron diffraction studies of Gd2Zr2O7 pyrochlore[J]. J Solid State Chem, 2011, 184(7): 1695-1698.
    [4] KUMAR N R, CHANDRA N V, SHEKAR C, et al. Pressure induced structural transformation of pyrochlore Gd2Zr2O7[J]. Solid State Commun, 2008, 147(9-10): 357-359.
    [5] LIAN J, WANG L, CHEN J, et al. The order-disorder transition in ion-irradiated pyrochlore[J]. Acta Materialia, 2003, 51(5): 1493-1502.
    [6] SHANON R D. Crystal physics, diffraction, theoretical and general crystallography[J]. Acta Crystallogr A, 1976, 32(5): 751-756.
    [7] HIROTO Y, YUJI A, TSUNEO M, et al. EXAFS study of (La1-xMx)2Zr2O7(M=Nd and Ce)[J]. Materials, 1996, 238(2): 163-168.
    [8] [8]YAMAZAKI S, YAMASHITA T, MATSUI T, et al. Thermal expansion and solubility limits of plutonium-doped lanthanum zirconates[J]. J Nucl Mater, 2001, 294(1-2): 183-187.
    [9] GLERUP M, NIELSEN O F, POULSEN F W. The structural transformation from the pyrochlore structure, A2B2O7, to the fluorite structure, AO2, studied by Raman spectroscopy and defect chemistry modeling[J]. J Solid State Chem, 2001, 160(1): 25-28.
    [10] KUMAR N R, CHANDRA N V, SHEKAR C, et al. Pressure induced structural transformation of pyrochlore Gd2Zr2O7[J]. Solid State Commun, 2008, 147(9-10): 357-359.
    [11] TOBY B H. EXPGUI, a graphical user interface for GSAS[J]. Journal of Applied Crystallography, 2001, 34(2): 210-213.
    [12] HESS N J, BEGG B D, CONRADSON S D. Spectroscopic investigations of the structural phase transition in Gd2(Ti1-yZry)2O7 pyrochlores[J]. J Phys Chem B, 2002, 106(18): 4663-4677.
    [13] SUBRAMANIAN M A, ARAVAMUDAN G, SUBBA R G V. Oxide pyrochlores: A review[J]. Prog Solid State Chem, 1983, 15(1): 55-143.
    [14] HOROWITZ H S, LONGO J M, LEWANDOWSKI J T. Oxygen electrocatalysis on some oxide pyrochlores[J]. J Electrochem Soc, 1983, 130(9): 1851-1859.
    [15] PANNETIER J. Energie electrostatique des reseaux pyrochlore[J]. J Phys Chem Solids, 1973, 34(4): 583-589.
    [16] WILLIAM W B, PETER S W, OSVALD K. Pyrochlores: Ⅹ. Madelung energies of pyrochlores and defect fluorites[J]. J Chem, 1976, 54(14): 2316-2334.
    [17] MANDAL B P, ANKITA B J, VASANT S. Order disorder transition in Nd2-yGdyZr2O7 pyrochlore solid solution: An X-ray diffraction and Raman spectroscopic study[J]. J Solid State Chem, 2007, 180(10): 2643-2648.
计量
  • 文章访问数:  346
  • HTML全文浏览量:  0
  • PDF下载量:  1109
  • 被引次数: 0
出版历程
  • 刊出日期:  2013-05-19

目录

    /

    返回文章
    返回