北京大气降水中氚时间序列的恢复
Reconstruction of Tritium Time Series in Precipitation of Beijing
-
摘要: 20世纪60年代全球密集的核试验使大气中的氚含量显著增加,这为其在水循环研究中的应用,尤其在地下水定年研究中的应用提供了条件。然而,由于监测站点的布设等原因,大部分地区缺乏大气降水中氚的长期监测数据,给应用带来了困难。本文在分析现有大气降水氚时间序列恢复方法的原理和适用条件等的基础上,用多种方法(关秉钧法、趋势面分析法、三角形插值法和相关法)联合恢复了北京1953—2002年大气降水中的氚时间序列数据,并通过比较确定了最优算法和最优恢复曲线。Abstract: Human nuclear activities, especially intensive nuclear tests during the 1960s in the world, caused atmospheric tritium concentration increasing significantly, which provided convenient condition for global water cycle research, especially for tracer dating research of groundwater. However, due to the layout of monitoring sites and other reasons, most parts of the world are lack of monitoring data of tritium concentration in precipitation, which brought difficulties in determining the input function which is essential for groundwater tracer dating technique. Based on the analysis of principles and applicability of present reconstruction methods of tritium time series, the tritium time series in precipitation in Beijing during 1953—2002 was reconstructed using combined methods, including Guanbingjun method, trend surface analysis method, trigonometric interpolation method and correlation method. Furthermore, the best method and the best time series curve were elected through comparison of results of different methods.
-
Keywords:
- Beijing ,
- precipitation ,
- tritium ,
- isotope
-
-
[1] 郭文胜,邹乐西,李洁,等. 环境大气氚的测定技术研究[J]. 原子能科学技术,2007,41(1):125-128.GUO Wensheng, ZOU Lexi, LI Jie, et al. Testing technique analysis of tritium in atmosphere[J]. Atomic Energy Science and Technology, 2007, 41(1): 125-128(in Chinese). [2] 翟远征,王金生,左锐,等. 地下水年龄在地下水研究中的应用研究进展[J]. 地球与环境,2011,39(1):113-120.ZHAI Yuanzheng, WANG Jinsheng, ZUO Rui, et al. Progress in applications of groundwater ages in groundwater research[J]. Earth and Environment, 2011, 39(1): 113-120(in Chinese). [3] KAUFMAN S, LIBBY W. The natural distribution of tritium[J]. Physical Review, 1954, 93(6): 1337-1344. [4] 高淑琴. 河南平原第四系地下水循环模式及其可更新能力评价[D]. 长春:吉林大学环境与资源学院,2008. [5] 关秉钧. 我国大气降水中氚的数值推算[J]. 水文地质工程地质,1986(4):38-41.GUAN Bingjun. Calculation of tritium of precipitation of China[J]. Hydrogeology and Engineering Geology, 1986(4): 38-41(in Chinese). [6] 关秉钧,唐京春. 用环境同位素研究北京地区地下水及工业污染时空变化规律[J]. 水文地质工程地质,1992,19(5):10-14.GUAN Bingjun, TANG Jingchun. Investigation on time and spatial changing rule of underground water and industrial pollutants in Beijing region by environmental isotope method[J]. Hydrogeology & Engineering Geology, 1992, 19(5): 10-14 (in Chinese). [7] 连炎清. 大气降水氚含量恢复的多元统计学方法:以临汾地区降水氚值恢复为例[J]. 中国岩溶,1990,9(2):157-166. [8] ZHAI Yuanzheng, WANG Jinsheng, GUO Hui, et al. Reconstruction and optimization of tritium time series in precipitation of Beijing, China[J]. Radiocarbon, 2013, 55(1): 67-79. [9] 卫克勤,林瑞芬,王志祥,等. 我国天然水中氚含量的分布特征[J]. 科学通报,1980(10):467-470.WEI Keqin, LIN Ruifen, WANG Zhixiang, et al. Distribution characteristics of tritium of precipitation in China[J]. Chinese Science Bulletin, 1980(10): 467-470(in Chinese). [10] 卫克勤,林瑞芬,王志祥. 北京地区降水中的氘、氧-18、氚含量[J]. 中国科学B辑,1982(8):754-757.WEI Keqin, LIN Ruifen, WANG Zhixiang. Contents of 2H, 18.O and 3H in precipitation of Beijing[J]. Science in China B, 1982(8): 754-757(in Chinese). [11] 王芸生,许贵森,关秉钧. 试论氚在水圈中的分布特征与中国境内的规律[J]. 地球学报,1987,9(1):191-200.WANG Yunsheng, XU Guisen, GUAN Bingjun. The features and regularity of the distribution of tritium in the hydrosphere and in the territory of China[J]. Acta Geoscientica Sinica, 1987, 9(1): 191-200(in Chinese).
计量
- 文章访问数: 204
- HTML全文浏览量: 0
- PDF下载量: 1374