基于MPS方法模拟液态铅铋合金中弹状气泡上升

Numerical Simulation of Taylor Bubble Rising in Liquid Lead-bismuth Eutectic Based on MPS Method

  • 摘要: 基于移动粒子半隐式(MPS)方法对液态铅铋合金中单个弹状气泡的垂直上升行为进行数值模拟,得到弹状气泡上升过程的形态变化、气泡最终上升速度拟合直线及下降液膜厚度与下降液膜中的轴向速度分布。将部分数值模拟结果与文献中的实验结果进行比较,揭示了弹状气泡最终上升速度、下降液膜厚度及其中轴向速度分布所满足的规律。比较结果证明了所选取计算模拟模型的正确性与合理性,以及MPS-MAFL方法用于模拟弹状气泡上升行为的准确性与可靠性。

     

    Abstract: The Taylor bubble rising in a vertical tube filled with liquid lead-bismuth eutectic was simulated based on MPS method. Several performed results including shape development, bubble rising terminal speed fitting line, and the thickness and axial velocity profile of the falling film were presented. The simulation results were compared with some experimental results from literature and reveal the corresponding laws obeyed by the terminal speed, velocity profile and film thickness. The computational results agree well with both theoretical analysis and experimental results, which demonstrates the reasonable selection of model as well as the accuracy and reliability of MPS method.

     

/

返回文章
返回