基于OECD/NEA堆芯功率分布基准的RMC验证

高彬, 马续波, 陈义学, 余慧

高彬, 马续波, 陈义学, 余慧. 基于OECD/NEA堆芯功率分布基准的RMC验证[J]. 原子能科学技术, 2013, 47(增刊2): 483-487. DOI: 10.7538/yzk.2013.47.S1.0483
引用本文: 高彬, 马续波, 陈义学, 余慧. 基于OECD/NEA堆芯功率分布基准的RMC验证[J]. 原子能科学技术, 2013, 47(增刊2): 483-487. DOI: 10.7538/yzk.2013.47.S1.0483
GAO Bin, MA Xu-bo, CHEN Yi-xue, YU Hui. Verification of RMC With Reactor Benchmark of Core Power Distribution Based on OECD/NEA[J]. Atomic Energy Science and Technology, 2013, 47(增刊2): 483-487. DOI: 10.7538/yzk.2013.47.S1.0483
Citation: GAO Bin, MA Xu-bo, CHEN Yi-xue, YU Hui. Verification of RMC With Reactor Benchmark of Core Power Distribution Based on OECD/NEA[J]. Atomic Energy Science and Technology, 2013, 47(增刊2): 483-487. DOI: 10.7538/yzk.2013.47.S1.0483

基于OECD/NEA堆芯功率分布基准的RMC验证

Verification of RMC With Reactor Benchmark of Core Power Distribution Based on OECD/NEA

  • 摘要: 本文基于OECD/NEA的堆芯功率分布基准题对反应堆蒙特卡罗程序RMC临界计算功能进行了验证,并对RMC堆芯临界计算准确性进行了对比验证。本文中RMC采用ENDF/B-Ⅵ库计算了堆芯的特征值和统计了1/8堆芯的pin-by-pin裂变率,其结果与MCNP计算结果和参考解进行了对比。其中特征值计算结果与参考解吻合良好,裂变率与参考解的平均相对偏差为2.89%,与MCNP平均相对偏差仅为0.5%。另外,RMC计算了堆芯的4种不同栅元的特征值和栅元中不同核素的反应率,结果显示以上参数与参考解均吻合良好,说明RMC具有良好的临界计算功能,计算结果为求解类似问题时计算程序及条件选择提供直接参考。

     

    Abstract: The critical calculation capacity of RMC (Reactor Monte Carlo Code) was verified based on the core power distribution verification benchmark released by OECD/NEA. The data of ENDF/B-Ⅵ library were used by RMC, and the whole core eigenvalues were calculated and the 1/8 pin-by-pin fission rate was counted. Comparisons were made among the benchmark eigenvalues and those outputs by the RMC code and MCNP. The eigenvalue calculation results are in good agreement with the reference and the outputs of MCNP. The fission rate calculated by this work has an average relative deviation of 2.89% compared with the reference, and 0.5% with MCNP. The fission rate and absorption rate of different nuclides were calculated as well as the eigenvalues of four different cells. The results agree well with the reference data, which indicates that RMC has a good performance in core critical calculation capacity and the results provide a direct reference for the similar problem calculation.

     

  • [1] X-5 Monte Carlo Team. MCNP-A general Monte Carlo N-particle transport code, version 5, LA-CP-03-0248[R]. US: Los Alamos National Laboratory, 2003.
    [2] BLOMQUIST R N. Status of the VIM Monte Carlo neutron/photon transport code[C]∥ANS 12th Biennial RPSD Topical Meeting. [S.l.]: [s.n.], 2002.
    [3] BOWMAN S M, HOLLENBACH D F, DEHART M D, et al. SCALE 5: Powerful new criticality safety analysis tools[C]∥Proceedings of the 7th International Conference on Nuclear Criticality Safety (ICNC2003). Japan: [s.n.], 2003.
    [4] PROCASSINI R, TAYLOR J, HAGMANN S. Update on the development and validation of mercury: A modern, monte carlo particle transport code, UCRL-PROC-212722[R]. US: Lawrence Livermore National Laboratory, 2005.
    [5] SUTTON T M, DONOVAN T J, TRUMBULL T H, et al. The MC21 Monte Carlo transport code[C]∥Joint International Topical Meeting on Mathematics & Computation and Supercomputing in Nuclear Applications (M&C + SNA 2007). CA: [s.n.], 2007.
    [6] SMITH N, ARMISHAW M, COOPER A. Current status and future direction of the MONK software package[C]∥Proceedings of an International Conference on Nuclear Criticality Safety (ICNC’03). Japan: [s.n.], 2003.
    [7] MISS J, JACQUET O, BERNARD F, et al. Using various point wise and multi-group cross section libraries in MORET criticality calculations[C]∥International Conference on Nuclear Data for Science and Technology. Nice, France: [s.n.], 2007.
    [8] NAGAYA Y, OKUMURA K, MORI T, et al. MVP/GMVP Ⅱ: General purpose Monte Carlo codes for neutron and photon transport calculations based on continuous energy and multigroup methods[R]. [S.l.]: [s.n.], 2005.
    [9] LEPP NEN J. A new assembly-level Monte Carlo neutron transport code for reactor physics calculations[C]∥Mathematics and Computation, Supercomputing, Reactor Physics and Nuclear and Biological Applications. France: [s.n.], 2005.
    [10] WANG Kan, LI Zeguang, SHE Ding, et al. Progress on RMC: A Monte Carlo neutron transport code for reactor analysis[C]∥International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2011). Brazil: [s.n.], 2011.
    [11] Benchmark Calculations of Power Distribution Within Fuel Assemblies. Phase Ⅱ: Comparison of data reduction and power reconstruction methods in production codes[R]. [S.l.]: [s.n.], 2003.
计量
  • 文章访问数:  186
  • HTML全文浏览量:  0
  • PDF下载量:  1020
  • 被引次数: 0
出版历程
  • 刊出日期:  2013-12-19

目录

    /

    返回文章
    返回