三维特征线的并行方法研究

张知竹, 李庆, 王侃

张知竹, 李庆, 王侃. 三维特征线的并行方法研究[J]. 原子能科学技术, 2013, 47(增刊): 38-42. DOI: 10.7538/yzk.2013.47.zk.0038
引用本文: 张知竹, 李庆, 王侃. 三维特征线的并行方法研究[J]. 原子能科学技术, 2013, 47(增刊): 38-42. DOI: 10.7538/yzk.2013.47.zk.0038
ZHANG Zhi-zhu, LI Qing, WANG Kan. Parallelization Method for Three Dimensional MOC Calculation[J]. Atomic Energy Science and Technology, 2013, 47(增刊): 38-42. DOI: 10.7538/yzk.2013.47.zk.0038
Citation: ZHANG Zhi-zhu, LI Qing, WANG Kan. Parallelization Method for Three Dimensional MOC Calculation[J]. Atomic Energy Science and Technology, 2013, 47(增刊): 38-42. DOI: 10.7538/yzk.2013.47.zk.0038

三维特征线的并行方法研究

Parallelization Method for Three Dimensional MOC Calculation

  • 摘要: 设计了基于角度并行的三维特征线的并行算法。同时,为提高并行效率,采用了角度预分组和射线组合的策略,使通信量达到最小,并应用到中子输运方程的三维特征线计算程序TCM中。数值结果表明:角度并行方法和串行方法的结果完全一致,在采用了通信优化和负载平衡策略后,并行效率得到了显著提高。

     

    Abstract: A parallelization method based on angular decomposition for the three dimensional MOC was designed. To improve the parallel efficiency, the directions were pre-grouped and the groups were assembled to minimize the communication. The improved parallelization method was applied to the three dimensional MOC code TCM. The numerical results show that the calculation results of parallelization method are agreed with serial calculation results. The parallel efficiency gets obvious increase after the communication optimized and load balance.

     

  • [1] 赵荣安. 未来方法开发中的几个理论问题[C]∥第十三届反应堆数值计算与粒子输运学术会议. 西安:[出版者不详],2010.
    [2] LIU Z, WU H, CAO L, et al. A new threedimensional method of characteristics for the neutron transport calculation[J]. Annals of Nuclear Energy, 2011, 38: 447-454.
    [3] YAMAJI K, MATSUMOTO H, SATO D, et al. Simple and efficient parallelization method for MOC calculation[J]. Journal of Nuclear Science and Technology, 2010, 47(1): 90-102.
    [4] 柴晓明,姚栋,王侃. 基于特征线方法的三维中子输运程序:Ⅰ.边界条件的插值处理[J]. 核动力工程,2010,31(2):11-15.CHAI Xiaoming, YAO Dong, WANG Kan. Three dimension neutron transport characteristics method code: Ⅰ. Interpolation treatment of boundary condition[J]. Nuclear Power Engineering, 2010, 31(2): 11-15(in Chinese).
    [5] 都志辉. 高性能计算之并行编程技术:MPI并行程序设计[M]. 北京:清华大学出版社,2001.
    [6] DAHMANI M, ROY R. Parallel solver based on the three dimensional characteristics method: Design and performance analysis[J]. Nuclear Science and Engineering, 2005, 150: 155-169.
    [7] POSTMA T, VUJIC J. The method of characteristics in general geometry with anisotropic scattering[C]∥ Proc. Int. Conf. Mathematics and Computation, Reactor Physics and Environmental Analysis in Nuclear Application. Madrid, Spain: [s. n.], 1999.
    [8] PETROVIC I, BENOIST P, MARLEAU G. A quasi-isotropic reflecting boundary condition for the TIBERE heterogeneous leakage model[J]. Nuclear Science and Engineering, 1996, 122: 151-166.
    [9] OECD. Benchmark on deterministic transport calculations without spatial homogenisation: A 2-D/3-D MOX fuel assembly benchmark, Nuclear Science NEA/NSC/DOC[R]. [S. l.]: [s. n.], 2003.
    [10] SMITH M A, PALMIOTTI G, TAIWO T A. Benchmark specification for deterministic MOX fuel assembly transport calculations without spatial homogenisation (3-D extension C5G7 MOX), NEA/NSC/DOC(2001)4[R]. [S. l.]: [s. n.], 2001.
计量
  • 文章访问数:  301
  • HTML全文浏览量:  0
  • PDF下载量:  1279
  • 被引次数: 0
出版历程
  • 刊出日期:  2013-06-19

目录

    /

    返回文章
    返回