Al2O3对独居石玻璃陶瓷固化体的影响
Effect of Al2O3 on Monazite Glass-ceramic Wasteform
-
摘要: 本文研究了Al2O3掺量对独居石玻璃陶瓷固化体结构和化学稳定性的影响。用傅里叶变换红外光谱(FTIR)和X射线衍射(XRD)方法表征样品结构,用溶解速率法和全谱直读等离子体发射光谱(ICP-OES)分别测定样品在浸出液中浸泡后的失重速率及各元素的浸出浓度,以研究固化体的化学稳定性。研究结果表明:当Al2O3掺量为4%(摩尔分数)时,在980 ℃下保温3 h得到的独居石玻璃陶瓷固化体具有较高的化学稳定性,浸泡14 d时其质量浸出率最低,约为8.1 ng/(cm2•min),其中Ce、La元素在浸出液中均未检出;固化体的主晶相为独居石,结构中含有大量稳定的正磷酸基团[PO4]3-和少量的焦磷酸基团[P2O7]4-,不存在偏磷酸基团[PO3]-。Abstract: The effects of monazite glass-ceramic wasteforms containing different Al2O3 contents on their structures and properties were investigated. The structure of the glass-ceramic wasteforms was analyzed by Fourier transform infrared (FTIR) and X-radiation diffraction (XRD). The chemical stability of monazite glass-ceramic wasteforms was measured by dissolution rate and inductively coupled plasma optical emission spectrometry (ICP-OES) method. The results show that the chemical stability of monazite glass ceramic wasteforms with 4% (mole fraction) Al2O3 and made at 980 ℃ for 3 h is optimal. The 14 d leaching rate of monazite glass-ceramic wasteforms is about 8.1 ng/(cm2•min), which is the lowest in all the samples. The main crystalline phase of the as prepared glass-ceramic wasteforms is monazite. There are a large number of [PO4]3- groups, a small number of [P2O7]4- groups, and no [PO3]- groups in the wasteforms.
-
Keywords:
- iron phosphate glass ,
- high level radioactive waste ,
- wasteform ,
- glass-ceramic
-
-
[1] SALES B C, BOATNER L A. Radioactive waste forms for the future[M]. Amsterdam, North-Holland: [s. n.], 1988: 193. [2] CHICK L A, BUNNELL L R, STRACHAN D M, et al. Advances in ceramics, Vol. 20: Nuclear waste management Ⅱ[C]. Westerville, OH: American Ceramic Society, 1986: 149-156. [3] KARABULUT M, MARASINGHE K, RAY C S, et al. A high energy X-ray and neutron scattering study of iron phosphate glasses containing uranium[J]. Journal of Applied Physics, 2000, 87(5): 2185-2193. [4] MARASINGHE G K, KARABULUT M, RAY C S, et al. Properties and structure of vitrified iron phosphate nuclear wasteforms[J]. Journal of Non-Crystalline Solids, 2000, 263-264: 146-154. [5] 俞建长,宋开新. 晶化温度对微晶玻璃结构和性能的影响[J]. 玻璃与搪瓷,2004,2(5):12-15.YU Jianchang, SONG Kaixin. The effect of crystallization temperature on performance and structure of glass ceramic[J]. Glass & Enamel, 2004, 2(5): 12-15(in Chinese). [6] LOISEAU P, CAURANT D, BAFFIER N, et al. Development of zirconolite-based glass-ceramics for the conditioning of actinides[C]∥Materials Research Society Symposium Proceedings. Sydney: Materials Research Society, 2001. [7] LOISEAU P, CAURANT D, BAFFIER N, et al. Neodymium incorporation in zirconolite-based glass-ceramics[C]∥Materials Research Society Symposium Proceedings. Sydney: Materials Research Society, 2001. [8] McGLINN P J, ADVOCAT T, LOI E, et al. Nd- and Ce-doped ceramic-glass composites: Chemical durability under aqueous conditions and surface alteration in a moist clay medium at 90 ℃[C]∥Materials Research Society Symposium Proceedings. Sydney: Materials Research Society, 2001. [9] 马鸿文. 工业矿物与岩石[M]. 北京:地质出版社,2002:392. [10] 吕彦杰. 模拟α高放废液独居石磷酸盐玻璃陶瓷固化体的研究[D]. 武汉:中国地质大学,2008. [11] REIS S T, MARTINELLI J R. Cs immobilization by sintered lead iron phosphate glasses[J]. Journal of Non-Crystalline Solids, 1999: 247(1-3): 241-247. [12] Sadtler Research Laboratories. Minerals infrared grating spectra, Vol. l[M]. Philadelphia, PA, USA: Sadtler Research Laboratories, Inc., 1973. [13] 何涌,张保民. 独居石微晶玻璃中玻璃相含量的红外光谱定量测定[J]. 光谱学与光谱分析,2003,23(2):262-264.HE Yong, ZHANG Baomin. Quantitative determination of glass content in monazite glass-ceramics by IR technique[J]. Spectroscopy and Spectral Analysis, 2003, 23(2): 262-264(in Chinese). [14] 赵彦钊,殷海荣. 玻璃工艺学[M]. 北京:化学工业出版社,2006. [15] 程金树,李宏,汤李缨,等. 微晶玻璃[M]. 北京:化学工业出版社,2007:112-120.
计量
- 文章访问数: 246
- HTML全文浏览量: 0
- PDF下载量: 1428