六角形格林函数节块法

Hexagonal Green Function Nodal Method

  • 摘要: 本文基于保角变换思想将格林函数节块法应用于六角形几何,该模型采用保角变换将六角形节块变换为矩形节块,对变换后的矩形节块扩散方程横向积分并应用第二类边界条件的格林函数法进行求解。基于此模型编制了堆芯三维多群稳态程序NACK。利用NACK程序计算了不带反射层二维VVER-1000、三维两群VVER-440和带不连续因子的二维基准题。计算结果表明,有效增殖因数keff的误差均小于50 pcm,组件功率分布最大相对误差小于2%,验证了程序的正确性。

     

    Abstract: Based on the conformal mapping, Green function method was applied in hexagonal geometry. Conformal mapping was used to map a hexagonal node to a rectangular node before transverse integration. Then, the transverse integration equations were resolved using Green function method with the second boundary condition. A three-dimensional multi-energy-groups static program NACK was programmed based on those theories. The code was verified by VVER-1000-type core without the reflector, VVER-440-type three-dimensional two-energy-groups core and two-dimensional core with discontinuity factors. The eigenvalue error is less than 50 pcm, and the maximum relative error of the node average power is less than 2%. The accuracy of NACK is as good as that of other advanced node method codes.

     

/

返回文章
返回