竖直圆管内泡状流界面参数分布特性

刘国强, 孙立成, 阎昌琪, 幸奠川, 田道贵

刘国强, 孙立成, 阎昌琪, 幸奠川, 田道贵. 竖直圆管内泡状流界面参数分布特性[J]. 原子能科学技术, 2014, 48(7): 1176-1181. DOI: 10.7538/yzk.2014.48.07.1176
引用本文: 刘国强, 孙立成, 阎昌琪, 幸奠川, 田道贵. 竖直圆管内泡状流界面参数分布特性[J]. 原子能科学技术, 2014, 48(7): 1176-1181. DOI: 10.7538/yzk.2014.48.07.1176
LIU Guo-qiang, SUN Li-cheng, YAN Chang-qi, XING Dian-chuan, TIAN Dao-gui. Interfacial Parameter Distribution of Bubbly Flow in Vertical Circular Tube[J]. Atomic Energy Science and Technology, 2014, 48(7): 1176-1181. DOI: 10.7538/yzk.2014.48.07.1176
Citation: LIU Guo-qiang, SUN Li-cheng, YAN Chang-qi, XING Dian-chuan, TIAN Dao-gui. Interfacial Parameter Distribution of Bubbly Flow in Vertical Circular Tube[J]. Atomic Energy Science and Technology, 2014, 48(7): 1176-1181. DOI: 10.7538/yzk.2014.48.07.1176

竖直圆管内泡状流界面参数分布特性

Interfacial Parameter Distribution of Bubbly Flow in Vertical Circular Tube

  • 摘要: 采用双头光纤探针对内径为50 mm竖直圆管内空气-水两相泡状流界面参数径向分布特性进行了实验研究。气液两相表观速度变化范围分别为0.004~0.05 m/s和0.071~0.283 m/s。结果表明,竖直管内向上泡状流局部界面面积浓度(IAC)、空泡份额及气泡频率径向分布相类似,即气相流速较低时管道中间很大范围内以上3个局部界面参数几乎恒定,近壁区迅速下降到较低值;随气相流速的增加,局部界面参数在管道中心出现峰值。本实验中气泡聚合与破碎现象较少发生,索特平均直径沿径向近似均匀分布,且随气液两相流速变化很小。通过气泡横向受力解释了局部界面参数分布的影响机理。

     

    Abstract: The experimental study was performed on characteristics of interfacial parameters radial distribution of air-water bubbly flow by using a two-head optical fiber probe in a vertical circular tube with the inner diameter of 50 mm. The gas and liquid superficial velocities cover the ranges of 0.004-0.05 m/s and 0.071-0.283 m/s, respectively. The results show that the local interfacial area concentration (IAC), bubble frequency and void fraction nearly have the same distribution, that is, the three interfacial parameters almost keep constant along radius except in the near wall region where it falls to a low value with a low gas velocity; as the gas velocity increasing, the interfacial parameter has a peak value in the core region of circular tube. In the experiment, few bubble coalescence and breaking up occur, and the bubble Sauter mean diameter distribution in the radial direction is approximately uniform and changes little with gas and liquid velocities. The lateral bubble force in cross section is considered to explain the local parameters distribution pattern.

     

  • [1] 黄竹青. 基于小波分析的垂直上升管气液两相流流型的识别[J]. 中国电机工程学报,2006,26(1):26-29.HUANG Zhuqing. Wavelet analysis of distinguish flow pattern in vertical upward gas-liquid two-phase flow[J]. Proceedings of the CSEE, 2006, 26(1): 26-29(in Chinese).
    [2] 洪文鹏,刘燕,任静秋. 顺列管束间气液两相流型及压降特性研究[J]. 中国电机工程学报,2011,31(5):84-89.HONG Wenpeng, LIU Yan, REN Jingqiu. Investigation on gas-liquid two-phase flow patterns and pressure drop across an in-line tube bundles[J]. Proceedings of the CSEE, 2011, 31(5): 84-89(in Chinese).
    [3] 孙波,孙立成,幸奠川,等. 竖直大圆管内界面面积浓度分布特性[J]. 化工学报,2012,63(6):1810-1815.SUN Bo, SUN Licheng, XING Dianchuan, et al. Distribution profile of interfacial area concentration in vertical and large circular tubes[J]. Journal of Chemical Industry and Engineering (China), 2012, 63(6): 1810-1815(in Chinese).
    [4] SHEN X Z, MISHIMA K, NAKAMURA H. Two-phase distribution in a vertical large diameter pipe[J]. Int J Heat Mass Transfer, 2005, 48(1): 211-225.
    [5] 孙奇,赵华,杨瑞昌. 静止液相中气泡上升过程的分布特性[J]. 化工学报,2003,54(9):1301-1305. SUN Qi, ZHAO Hua, YANG Ruichang. Rising bubble distribution in stagnant liquid[J]. Journal of Chemical Industry and Engineering (China), 2003, 54(9): 1301-1305(in Chinese).
    [6] SHEN X, MATSUI R, MISHIMA K, et al. Distribution parameter and drift velocity for two-phase flow in large diameter pipe[J]. Nucl Eng Des, 2010, 240(7): 3991-4000.
    [7] 唐人虎,陈听宽,罗毓珊,等. 高温高压下用光纤探针测量截面含汽率的实验研究[J]. 化工学报,2001,52(6):560-563.TANG Renhu, CHEN Tingkuan, LUO Yushan, et al. Void fraction measurement by using optical probes at high temperature and high pressure[J]. Journal of Chemical Industry and Engineering (China), 2001, 52(6): 560-563(in Chinese).
    [8] KLAUS S, ERICH H. An experimental study of the void fraction distribution in adiabatic water-air two-phase flows in an inclined tube[J]. Int J Thermal Sci, 1999, 38(4): 305-314.
    [9] KATAKA I, ISHII M, SERIZAWA A. Local formulation and measurements of interfacial area concentration in twophase flow[J]. Int J Multiphase Flow, 1986, 12(4): 505-529.
    [10] 孙波,孙立成,田道贵,等. 光纤探针方法测量界面面积浓度实验研究[J]. 原子能科学技术,2013,47(3):432-436.SUN Bo, SUN Licheng, TIAN Daogui, et al. Experimental study of interfacial area concentration by optical fiber probe method[J]. Atomic Energy Science and Technology, 2013, 47(3): 432-436(in Chinese).
    [11] WU Q, WELTER K, McCREARY D, et al. Theoretical studies on the design criteria of double-sensor probe for the measurement of bubble velocity[J]. Flow Measurement and Instrumentation, 2001, 12(1): 43-45.
    [12] LUCAS D, KREPPER E, PRASSER H M. Use of models for lift, wall and turbulent dispersion forces acting on bubbles for poly-disperse flows[J]. Chem Eng Sci, 2007, 62(15): 4146-4157.
    [13] TOMIYAMA A, TAMAI H, ZUN I, et al. Transverse migration of single bubbles in simple shear flows[J]. Chemical Engineering Science, 2002, 57(10): 1849-1858.
计量
  • 文章访问数:  199
  • HTML全文浏览量:  0
  • PDF下载量:  1122
  • 被引次数: 0
出版历程
  • 刊出日期:  2014-07-19

目录

    /

    返回文章
    返回