堆内严重事故综合分析程序氧化模块MIDAC-OX的开发

王俊, 田文喜, 卢佳楠, 苏光辉, 秋穗正

王俊, 田文喜, 卢佳楠, 苏光辉, 秋穗正. 堆内严重事故综合分析程序氧化模块MIDAC-OX的开发[J]. 原子能科学技术, 2014, 48(8): 1440-1447. DOI: 10.7538/yzk.2014.48.08.1440
引用本文: 王俊, 田文喜, 卢佳楠, 苏光辉, 秋穗正. 堆内严重事故综合分析程序氧化模块MIDAC-OX的开发[J]. 原子能科学技术, 2014, 48(8): 1440-1447. DOI: 10.7538/yzk.2014.48.08.1440
WANG Jun, TIAN Wen-xi, LU Jia-nan, SU Guang-hui, QIU Sui-zheng. Development of In-vessel Severe Accident Analysis Code Oxidation Module MIDAC-OX[J]. Atomic Energy Science and Technology, 2014, 48(8): 1440-1447. DOI: 10.7538/yzk.2014.48.08.1440
Citation: WANG Jun, TIAN Wen-xi, LU Jia-nan, SU Guang-hui, QIU Sui-zheng. Development of In-vessel Severe Accident Analysis Code Oxidation Module MIDAC-OX[J]. Atomic Energy Science and Technology, 2014, 48(8): 1440-1447. DOI: 10.7538/yzk.2014.48.08.1440

堆内严重事故综合分析程序氧化模块MIDAC-OX的开发

Development of In-vessel Severe Accident Analysis Code Oxidation Module MIDAC-OX

  • 摘要: 介绍了MIDAC-OX程序的模型及结构,以AP1000为例,计算了全厂断电事故后燃料芯块融化、包壳破裂、包壳氧化以及氢气产生等现象,并分析了反应堆冷却剂泵惰转时期的DNBR、自然循环时期对应于不同程度冷却剂自然循环流量下燃料棒包壳的完整性,以及燃料棒包壳氧化对其破裂的延迟作用。该程序的正确性将在整体完成后进行验证,该模块的部分计算结果己与国际文献的计算结果进行对比,吻合度较好。

     

    Abstract: The structure and model of oxidation module MIDAC-OX were introduced. Taking AP1000 as an example, the break of fuel cladding, the oxidation of fuel cladding and the production of hydrogen were calculated, and then the DNBR during coolant pump inert rotating, the fuel cladding integrity under natural circulation and the delay of fuel cladding break due to oxidation were analyzed. The validity of this code would be checked after the code development fully finished. The results of this module have already partly compared with existing results. The comparison shows the results of this module are good.

     

  • [1] FICHOT F, ADROGUER B, VOLCHEK A, et al. Advanced treatment of zircaloy cladding high-temperature oxidation in severe accident code calculations, Part Ⅲ: Verification against representative transient tests[J]. Nuclear Engineering and Design, 2004, 232: 97-109.
    [2] BOSLAND L, FUNKE F, GIRAUNT N, et al. PARIS project: Radiolytic oxidation of molecular iodine in containment during a nuclear reactor severe accident, Part Ⅰ: Formation and destruction of air radiolysis products—Experimental results and modeling[J]. Nuclear Engineering and Design, 2008, 238: 3542-3550.
    [3] BOSLAND L, FUNKE F, LANGROCK G, et al. PARIS project: Radiolytic oxidation of molecular iodine in containment during a nuclear reactor severe accident, Part Ⅱ: Formation and destruction of iodine oxides compounds under irradiation—Experimental results modeling[J]. Nuclear Engineering and Design, 2011, 241: 4026-4044.
    [4] STEINBR CK M, BIRCHLEY J, BOLDYREV A V, et al. High-temperature oxidation and quench behaviour of Zircaloy-4 and E110 cladding alloys[J]. Progress in Nuclear Energy, 2010, 52: 19-36.
    [5] SCHANZ G, ADROGUER B, VOLCHEK A. Advanced treatment of zircaloy cladding high-temperature oxidation in severe accident code calculations, Part Ⅰ: Experimental database and basic modeling[J]. Nuclear Engineering and Design, 2004, 232: 75-84.
    [6] DZHUSOV Y P, EFANOV A D. The effect of drop let sprinkling on the oxidation kinetics of zirconium cladding in steam[J]. Nuclear Engineering and Design, 2000, 195: 339-351.
    [7] STEINBRUCK M, BIRCHLEY J, BOLDYREV A V. Hightemperature oxidation and quench behaviour of Zircaloy-4 and E110 cladding alloys[J]. Progress in Nuclear Energy, 2010, 52: 19-36.
    [8] KIM K T. The effect of fuel rod oxidation on PCMI-induced fuel failure[J]. Journal of Nuclear Materials, 2011, 418: 249-260.
    [9] MITA S, AKEBI N, SAWAMURA O, et al. Development of the advanced thermal reactor in Japan[J]. Nuclear Engineering and Design, 1993, 144: 283-292.
    [10] VOLCHEK A, ZVONAREV Y, SCHANZ G. Advanced treatment of zircaloy cladding high-temperature oxidation in severe accident code calculations, Part Ⅱ: Best-fitted parabolic correlations[J]. Nuclear Engineering and Design, 2004, 232: 85-96.
    [11] DUREIZ C, STEINBRUCK M, OHAI D, et al. Separate-effect tests on zirconium cladding degradation in air ingress situations[J]. Nuclear Energy and Design, 2009, 239: 244-253.
    [12] GROSSE M. Comparison of the high temperature oxidation behavior of different cladding materials[C]∥Jahrestagung Kerntechnik 2007: Tagungsbericht. Karlsruhe: INFORUM GmbH, 2007: 285-288.
    [13] STEINBRUCK M. Oxidation of zirconium alloys in oxygen at high temperatures up to 1 600 ℃[J]. Oxidation of Metals, 2008, 70: 317-329.
    [14] BEUZET E, LAMY J S, SIMONI E. Modelling of Zr-4 cladding oxidation by air, under severe accident conditions using the MAAP4 code[J]. Nuclear Engineering and Design, 2011, 241: 1217-1224.
    [15] GAIKWAD A J, VIJAYAN P K, BHARTIYA S, et al. An innovative approach for steam generator pressure control of a nuclear power plant[J]. Nuclear Engineering and Design, 2011, 241: 5113-5126.
    [16] GROSSE M, STEINBRUECK M, LEHMANN E, et al. Kinetics of hydrogen absorption and release in zirconium alloys during steam oxidation[J]. Oxidation of Metals, 2008, 70: 149-162.
    [17] SCHULZ T L. Westinghouse AP1000 advanced passive plant[J]. Nuclear Engineering and Design, 2006, 236: 1547-1557.
    [18] BUCK M. Modelling of the late phase of core degradation in light water reactors[M]. Stuttgart: University of Stuttgart Press, 2007.
    [19] ALLISON C M, BERNA G A, CHAMBERS R, et al. SCDAP/RELAP/MOD3.1 code manual volume Ⅳ, MATPRO: A library of materials properties for light-water-reactor accident analysis[R]. Unite State: Idaho National Engineering Laboratory EG&G Idaho, Inc., 1993.
    [20] 林诚格. 非能动安全先进核电厂AP1000[M]. 北京:原子能出版社,2008.
    [21] 朱继洲. 核反应堆安全分析[M]. 5版. 西安:西安交通大学出版社,2010.
计量
  • 文章访问数:  216
  • HTML全文浏览量:  0
  • PDF下载量:  1192
  • 被引次数: 0
出版历程
  • 刊出日期:  2014-08-19

目录

    /

    返回文章
    返回