动态膜电解制备四价铀中电流效率的讨论

袁中伟, 晏太红, 郑卫芳, 双红莹, 李晓东, 杨辉, 鲜亮

袁中伟, 晏太红, 郑卫芳, 双红莹, 李晓东, 杨辉, 鲜亮. 动态膜电解制备四价铀中电流效率的讨论[J]. 原子能科学技术, 2014, 48(9): 1548-1554. DOI: 10.7538/yzk.2014.48.09.1548
引用本文: 袁中伟, 晏太红, 郑卫芳, 双红莹, 李晓东, 杨辉, 鲜亮. 动态膜电解制备四价铀中电流效率的讨论[J]. 原子能科学技术, 2014, 48(9): 1548-1554. DOI: 10.7538/yzk.2014.48.09.1548
YUAN Zhong-wei, YAN Tai-hong, ZHENG Wei-fang, SHUANG Hong-ying, LI Xiao-dong, YANG Hui, XIAN Liang. Discussion About Current Efficiency in Preparation of Uranous Nitrate by Membrane Electrolysis[J]. Atomic Energy Science and Technology, 2014, 48(9): 1548-1554. DOI: 10.7538/yzk.2014.48.09.1548
Citation: YUAN Zhong-wei, YAN Tai-hong, ZHENG Wei-fang, SHUANG Hong-ying, LI Xiao-dong, YANG Hui, XIAN Liang. Discussion About Current Efficiency in Preparation of Uranous Nitrate by Membrane Electrolysis[J]. Atomic Energy Science and Technology, 2014, 48(9): 1548-1554. DOI: 10.7538/yzk.2014.48.09.1548

动态膜电解制备四价铀中电流效率的讨论

Discussion About Current Efficiency in Preparation of Uranous Nitrate by Membrane Electrolysis

  • 摘要: 进行了不同电流密度(40~160 mA/cm2)下电解制备四价铀的研究。研究结果表明,采用动态膜电解制备四价铀,能在保证六价铀转化率的前提下维持较高的电流效率,最终保证了四价铀制备过程的高效率。但在电解过程后期(大部分六价铀已转化为四价铀),若采用高电流密度,电流效率迅速下降,而采用低电流密度时仍能维持较高的电流效率。为进一步提高四价铀制备过程的电流效率,研究了程序控制电流密度阶梯减小的电解方式对电解过程后期的电流效率的影响。研究结果表明,与恒定电流密度电解方式相比,采用阶梯形减小电流密度的电解方式,可有效地提高电解过程的电流效率,有助于减少副反应的发生。

     

    Abstract: The preparation of uranous ion from uranyl nitrate at different current densities (40-160 mA/cm2) was investigated in this paper. The results show that membrane electrolysis can ensure high uranyl conversion ratio and maintain high current efficiency during most time of the electrolysis process. However, in the latter part of the process (most of the uranyl ions are converted to uranous ion), when current density is high, current efficiency declines rapidly; low current density is beneficial to maintain high current efficiency. Therefore, a preprogrammed automatic control for a step decreasing current density was studied to improve the current efficiency further. Compared with the constant current density, the step decreasing current density can effectively improve the current efficiency of the electrolysis process and reduce side reactions.

     

  • [1] SCHLEA C S, CAVERLY M R, HENRY H E, et al. Uranium(Ⅳ) nitrate as a reducing agent for plutonium(Ⅳ) in Purex process, DP-808[R]. [S. l.]: [s. n.], 1963.
    [2] MCKAY H A C, STREETON R J W, WAIN A G. Mixer-settler runs to study uranium(Ⅳ) as a reductant in uranium/plutonium separation, AERE-R-4381[R]. [S. l.]: [s. n.], 1963.
    [3] LOPEZ-MENCHERO E, GEHEM L, ESCHRICH H, et al. Study of uranium(Ⅳ) nitrate as reductant for plutonium, Ⅰ: The preparation of uranium(Ⅳ) nitrate solutions, ETR-180[R]. [S. l.]: [s. n.], 1966.
    [4] SALOMON L, LOPEZ-MENCHERO E. Optimization of the aqueous processing of irradiated fuel from nuclear power reactors: Use of uranium(Ⅳ) nitrate as reductant in a Purex type processing plant[J]. Ind Eng Chem Process Des Develop, 1970, 9(3): 345-58.
    [5] HOISINGTON J E, HSU T C. Testing and economical evaluation of U(Ⅳ) in Purex, DP-MS-83-4[R]. [S. l.]: [s. n.], 1983.
    [6] OREBAUGH E G. Adaptation of U(Ⅳ) reductant to savannah river plant Purex processes, DP-1704[R]. [S. l.]: [s. n.], 1986.
    [7] 何阿弟,叶明吕,周祖铭,等. 隔膜电解还原法制备四价铀的研究[J]. 核技术,1997,20(7):413-417.HE Adi, YE Minglv, ZHOU Zuming, et al. A study on preparation of uranous nitrate by membrane electrolytic reduction[J]. Nuclear Techniques, 1997, 20(7): 413-417(in Chinese).
    [8] SINI K, MISHRA S, MALLIKA C, et al. Reduction of uranyl nitrate ions in a continuous flow electrochemical reactor[J]. J Radioanal Nucl Chem, 2013, 295(2): 1505-1510.
    [9] 袁中伟,双红莹,晏太红,等. 动态膜电解制备四价铀,Ⅰ: 装置建立及性能测试[J]. 核化学与放射化学,2012,34(1):55-59.YUAN Zhongwei, SHUANG Hongying, YAN Taihong, et al. Preparation of uranous nitrate by membrane electrolysis, Ⅰ: Electrolyser setup and performance test[J]. Journal of Nuclear and Radiochemisty, 2012, 34(1): 55-59(in Chinese).
    [10] 邰德荣,仝继红,王欣昌,等. 硝酸铀酰在电还原脉冲筛板柱中的电解还原[J]. 原子能科学技术,1992,26(3):1-13.TAI Derong, TONG Jihong, WANG Xinchang, et al. Electrolytic reduction of uranyl nitrate in the electropulsed sieve plate extraction column[J]. Atomic Energy Science and Technology, 1992, 26(3): 1-13(in Chinese).
    [11] 邰德荣,仝继红,刘俊,等. 30%TBP(煤油)-硝酸体系中HNO3及U(Ⅵ)的电解还原动力学[J]. 核科学与工程,1992,12(1):66-76.TAI Derong, TONG Jihong, LIU Jun, et al. Studies on the electroreduction kinetics of uranium(Ⅵ) and nitric acid in system of 30%TBP (kerosene)-HNO3[J]. Chinese Journal of Nuclear Science and Engineering, 1992, 12(1): 66-76(in Chinese).
    [12] 姜圣阶,任凤仪. 核燃料后处理工学[M]. 北京:原子能出版社,1995.
    [13] 核燃料后处理工程[M]. 杨云鸿,译. 北京:原子能出版社,1980.
    [14] 李斌,何辉,丁伯发,等. 肼为还原剂催化还原U(Ⅵ)制备U(Ⅳ)的工艺条件[J]. 核化学与放射化学,2013,35(1):24-28.LI Bin, HE Hui, DING Bofa, et al. Platinum-catalyzed reduction of U(Ⅵ) with hydrazine in nitric acid solutions[J]. Journal of Nuclear and Radiochemisty, 2013, 35(1): 24-28(in Chinese).
    [15] RAO K S, SHYAMLAL R, NARAYAN C V, et al. Uranous nitrate production for Purex process applications using PtO2 catalyst and hydrazine nitrate as reductant, BARC/2003/E/010[R]. [S. l.]: [s. n.], 2003.
    [16] ABDUNNABI H M, ANANYEV A V, KROT N N. Platinum catalyzed reduction of uranium(Ⅵ) with hydrazine in sulfuric acid media[J]. J Radioanal Nucl Chem, 1994, 186(1): 89-97.
    [17] KIM K W, KIM J D, AOYAGI H, et al. Kinetics of reduction of uranium(Ⅵ) to uranium(Ⅳ) at titanium electrode in nitric acid and hydrazine media[J]. Journal of Nuclear Science and Technology, 1994, 31(4): 329-334.
    [18] ONDREJCIN R S. Physical properties of uranium process solutions, DP-653[R]. [S. l.]: [s. n.], 1961.
计量
  • 文章访问数:  222
  • HTML全文浏览量:  0
  • PDF下载量:  1113
  • 被引次数: 0
出版历程
  • 刊出日期:  2014-09-19

目录

    /

    返回文章
    返回