有热管冷却的乏燃料池自然对流换热特性分析

郑文龙, 王文, 耑锐, 匡以武

郑文龙, 王文, 耑锐, 匡以武. 有热管冷却的乏燃料池自然对流换热特性分析[J]. 原子能科学技术, 2014, 48(12): 2250-2256. DOI: 10.7538/yzk.2014.48.12.2250
引用本文: 郑文龙, 王文, 耑锐, 匡以武. 有热管冷却的乏燃料池自然对流换热特性分析[J]. 原子能科学技术, 2014, 48(12): 2250-2256. DOI: 10.7538/yzk.2014.48.12.2250
ZHENG Wen-long, WANG Wen, ZHUAN Rui, KUANG Yi-wu. Analysis of Natural Convection Heat Transfer in Spent Fuel Pool Cooled With Heat Pipe[J]. Atomic Energy Science and Technology, 2014, 48(12): 2250-2256. DOI: 10.7538/yzk.2014.48.12.2250
Citation: ZHENG Wen-long, WANG Wen, ZHUAN Rui, KUANG Yi-wu. Analysis of Natural Convection Heat Transfer in Spent Fuel Pool Cooled With Heat Pipe[J]. Atomic Energy Science and Technology, 2014, 48(12): 2250-2256. DOI: 10.7538/yzk.2014.48.12.2250

有热管冷却的乏燃料池自然对流换热特性分析

Analysis of Natural Convection Heat Transfer in Spent Fuel Pool Cooled With Heat Pipe

  • 摘要: 将分离式热管作为长期非能动冷却系统应用CAP1400乏燃料池,分离式热管的蒸发端布置在乏燃料池四周。本文运用数值模拟方法对具有热管冷却的乏燃料池内温度场和流场特性进行数值分析,并研究布置在池内的各排蒸发管管外对流换热强度。研究表明:当能动型冷却系统停止工作后,仅靠该非能动冷却系统可成功带走池内衰变热并保证池内不沸腾;内排蒸发管束外侧的对流换热系数高于外排蒸发管束,可达到外排管束的1.05倍,蒸发管上、下端的对流换热系数较大,中间段对流换热系数最小。研究结果对分离式热管运用于乏燃料池具有一定参考意义。

     

    Abstract: Split heat pipes were applied into CAP1400 spent fuel pool (SFP) as a complete passive cooling system, and the evaporation ends of split heat pipes were arranged around SFP. Numerical simulation method was used to analyze the temperature and velocity characteristics of SFP, and natural convection heat transfer ability outside of each row of the evaporation ends was also analyzed. The results show that when active cooling system out of work, this complete passive cooling system can successfully remove the decay heat from SFP and prevent SFP from boiling. The inner evaporation pipes have much higher heat transfer ability and can reach 1.05 times that of the outer pipes. The natural convection heat transfer coefficient is much larger on the upper and lower part than that on the middle part. This work will provide some references for applying split heat pipes into spent fuel pool.

     

  • [1] 郑明光,叶成,韩旭. 新能源中的核电发展[J]. 核技术,2010,32(2):81-86.ZHENG Mingguang, YE Cheng, HAN Xu. The development of nuclear power as an alternative energy[J]. Nuclear Techniques, 2010, 32(2): 81-86(in Chinese).
    [2] SCHULZ T L. Westinghouse AP1000 advanced passive plant[J]. Nuclear Engineering and Design, 2006, 236(14-16): 1547-1557.
    [3] MOCHIZUKI M, SINGH R, NGUYEN T. Completely passive heat pipe based emergency core cooling system for nuclear power station[C]∥Proceedings of 16th International Heat Pipe Conference (16th IHPC). [S. l.]: [s. n.], 2012.
    [4] MOCHIZUKI M, NGUYEN T, SINGH R. Nuclear reactor must need heat pipe for cooling[J]. Frontiers in Heat Pipes, 2012, 2(3): 1-5.
    [5] 李晓伟,吴莘馨,张丽. 模块式高温气冷堆非能动余热排出系统分析与研究[J]. 原子能科学技术,2011,45(7):790-795.LI Xiaowei, WU Xinxin, ZHANG Li. Analysis of passive residual heat removal system of modular high temperature gas-cooled reactor[J]. Atomic Energy Science and Technology, 2011, 45(7): 790-795(in Chinese).
    [6] 尹清辽,徐钊,吴莘馨. 模块式高温气冷堆预应力混凝土压力容器余热排出系统设计[J]. 原子能科学技术,2007,41(1):74-78.YIN Qingliao, XU Zhao, WU Xinxin. Design of pre-stressed concrete pressure vessel residual heat removal system for nodular high-temperature gas-cooled reactor[J]. Atomic Energy Science and Technology, 2007, 41(1): 74-78(in Chinese).
    [7] 李晓伟,张丽,吴莘馨. 高温气冷堆余热排出系统空冷塔内流场数值计算[J]. 核动力工程,2011,32(3):58-62.LI Xiaowei, ZHANG Li, WU Xinxin. Numerical simulation of flow field in cooling tower of passive residual heat removal system of HTGR[J]. Nuclear Power Engineering, 2011, 32(3): 58-62(in Chinese).
    [8] 李灿,凌星. 核电站乏燃料贮存水池失去最终热阱时的安全分析[J]. 核动力工程,2006,27(5):70-73.LI Can, LING Xing. Safety analysis of NPP spent fuel pit when losing of final heat trap[J]. Nuclear Power Engineering, 2006, 27(5): 70-73(in Chinese).
    [9] 徐红. AP1000外部灾害情形下乏燃料池缓解策略研究[J]. 原子能科学技术,2012,46(增刊):473-478.XU Hong. Study on mitigation strategy of AP1000 spent fuel pool exterior disaster[J].Atomic Energy Science and Technology, 2012, 46(Suppl.): 473-478(in Chinese).
    [10] 史国宝. 恰希玛核电厂乏燃料自然循环冷却分析[J]. 核动力工程,1999,20(5):413-416.SHI Guobao. Spent fuel natural circulation cooling analysis of Chashma Nuclear Power Plant[J]. Nuclear Power Engineering, 1999, 20(5): 413-416(in Chinese).
    [11] HABEEBULLAH M H, AKYURT M, NAJJAR Y S H. Experimental performance of a waste heat recovery and utilization system with a looped water-in-steel heat pipe[J].Applied Thermal Engineering, 1998, 18(7): 595-607.
    [12] AKYURT M, LAMFON N J, NAJJAR Y S H. Modeling of waste heat recovery by looped water-in-steel heat pipes[J]. International Journal of Heat and Fluid Flow, 1995, 16(4): 263-271.
    [13] LIU Di, TANG Guangfa, ZHAO Fuyun. Modeling and experimental investigation of looped separate heat pipe as waste heat recovery facility[J]. Applied Thermal Engineering, 2006, 26(17-18): 2433-2441.
    [14] 张光玉,张红,涂善东,等. 热管在核电工程中的应用[J]. 原子能科学技术,1997,31(1):89-96.ZHANG Guangyu, ZHANG Hong, TU Shandong, et al. Application of heat pipe in nuclear power engineering[J]. Atomic Energy Science and Technology, 1997, 31(1): 89-96(in Chinese).
    [15] 陶文铨. 数值传热学[M]. 西安:西安交通大学出版社,1995.
    [16] 邓斌,陶文铨. 管壳式换热器壳侧湍流流动与换热的三维数值模拟[J]. 化工学报,2004,55(7):1053-1059.DENG Bin, TAO Wenquan. Three-dimensional numerical simulation of turbulent flow and heat transfer characteristics in shell side of shell-and-tube heat exchangers[J]. Journal of Chemical Industry & Technology, 2004, 55(7): 1053-1059(in Chinese).
计量
  • 文章访问数:  288
  • HTML全文浏览量:  2
  • PDF下载量:  1255
  • 被引次数: 0
出版历程
  • 刊出日期:  2014-12-19

目录

    /

    返回文章
    返回