孔板管道下游流动加速腐蚀速率数值模拟研究

彭翊, 韩睿璇, 陈耀东

彭翊, 韩睿璇, 陈耀东. 孔板管道下游流动加速腐蚀速率数值模拟研究[J]. 原子能科学技术, 2015, 49(1): 77-82. DOI: 10.7538/yzk.2015.49.01.0077
引用本文: 彭翊, 韩睿璇, 陈耀东. 孔板管道下游流动加速腐蚀速率数值模拟研究[J]. 原子能科学技术, 2015, 49(1): 77-82. DOI: 10.7538/yzk.2015.49.01.0077
PENG Yi, HAN Rui-xuan, CHEN Yao-dong. Numerical Simulation Study of Flow Accelerated Corrosion in Downstream of Orifice Pipe[J]. Atomic Energy Science and Technology, 2015, 49(1): 77-82. DOI: 10.7538/yzk.2015.49.01.0077
Citation: PENG Yi, HAN Rui-xuan, CHEN Yao-dong. Numerical Simulation Study of Flow Accelerated Corrosion in Downstream of Orifice Pipe[J]. Atomic Energy Science and Technology, 2015, 49(1): 77-82. DOI: 10.7538/yzk.2015.49.01.0077

孔板管道下游流动加速腐蚀速率数值模拟研究

Numerical Simulation Study of Flow Accelerated Corrosion in Downstream of Orifice Pipe

  • 摘要: 采用计算流体力学方法中的k-ε模型模拟了孔板管道下游管壁与流体间的传质系数分布,并利用Sanchez-Caldera流动加速速率预测模型计算了孔板管道下游的流动加速腐蚀速率分布。结果表明,孔径比的减小会导致流动加速腐蚀敏感部位向孔板下游移动,入口流速的增大对孔板下游流动加速腐蚀敏感部位的位置无明显影响,pH值的增大能有效减小流动加速腐蚀速率。

     

    Abstract: The mass transfer coefficient distribution between the pipe wall and fluid was simulated by the k-ε model of computational fluid dynamic method. The distributions of flow accelerated corrosion (FAC) rate in downstream of orifice pipe were calculated by Sanchez-Caldera model. The results show that the sensitive position of FAC moves to downstream as decreasing orifice diameter ratio. However, the increase of inlet velocity has no significant influence on sensitive position of FAC. The FAC rate can be effectively reduced with increasing pH value.

     

  • [1] EPRI. Guidelines for controlling flow accelerated corrosion in fossil and combined cycle plants[R]. USA: EPRI, 2005.
    [2] BUSH S H. Failure mechanisms in nuclear power plant piping systems[J]. Journal of Pressure Vessel Technology, 1992, 114: 389-395.
    [3] UCHIDA S, NAITOH M, UEHARA Y, et al. Evaluation methods for corrosion damage of components in cooling systems of nuclear power plants by coupling analysis of corrosion and flow dynamics, Ⅱ: Evaluation of corrosive conditions in PWR secondary cooling system[J]. Journal of Nuclear Science and Technology, 2008, 45(12): 1275-1286.
    [4] 刘忠,刘春波,郑玉贵. 碳钢在单相流中流动加速腐蚀的数值模拟[J]. 核动力工程,2009,30(5):48-53.LIU Zhong, LIU Chunbo, ZHENG Yugui. Numerical simulation of flow accelerated corrosion of carbon steel in single liquid phase flow[J]. Nuclear Power Engineering, 2009, 30(5): 48-53(in Chinese).
    [5] SANCHEZ-CALDERA L E. The mechanism of corrosion-erosion in steam extraction lines of power stations[D]. USA: Massachusetts Institute of Technology, 1984.
    [6] BERGE P H. Proceedings of the conference ADRP on water chemistry and corrosion in the steam water loops of nuclear power stations[R]. France: Ermenonville, 1972.
    [7] SWEETON F H, BAES C F. The solubility of magnetite and hydrolysis of ferrous ion in aqueous solutions at elevated temperatures[J]. The Journal of Chemical Thermodynamics, 1970, 2(4):479-500.
    [8] CHILTON T H, COLBURN A P. Mass transfer (absorption) coefficients: Prediction from data on heat and fluid friction[J]. Industrial and Engineering Chemistry, 1934, 26: 1183-1187.
    [9] BERGE P H, RIBON C, SAINTPAUL P. Effect of hydrogen on the corrosion of steels in high temperature water[J]. Corrosion, 1977, 33(5): 173-178.
    [10] AHMED W H, BELLO M M, NAKLA M E, et al. Flow and mass transfer downstream of an orifice under flow accelerated corrosion conditions[J]. Nuclear Engineering and Design, 2012, 252: 52-67.
    [11] 伊成龙,张乐福. 孔板管道下游与射流冲击的CFD模拟及实验研究[J]. 原子能科学技术,2012,46(10):1197-1201.YI Chenglong, ZHANG Lefu. CFD simulation and experiment research of pipe downstream with orifice and jet impingement[J]. Atomic Energy Science and Technology, 2012, 46(10): 1197-1201(in Chinese).
计量
  • 文章访问数:  337
  • HTML全文浏览量:  0
  • PDF下载量:  1338
  • 被引次数: 0
出版历程
  • 刊出日期:  2015-01-19

目录

    /

    返回文章
    返回