基于入侵性野草算法的核动力装置故障诊断

段孟强, 袁灿

段孟强, 袁灿. 基于入侵性野草算法的核动力装置故障诊断[J]. 原子能科学技术, 2015, 49(4): 719-724. DOI: 10.7538/yzk.2015.49.04.0719
引用本文: 段孟强, 袁灿. 基于入侵性野草算法的核动力装置故障诊断[J]. 原子能科学技术, 2015, 49(4): 719-724. DOI: 10.7538/yzk.2015.49.04.0719
DUAN Meng-qiang, YUAN Can. Fault Diagnosis of Nuclear Power Plant Based on Invasive Weed Optimization Algorithm[J]. Atomic Energy Science and Technology, 2015, 49(4): 719-724. DOI: 10.7538/yzk.2015.49.04.0719
Citation: DUAN Meng-qiang, YUAN Can. Fault Diagnosis of Nuclear Power Plant Based on Invasive Weed Optimization Algorithm[J]. Atomic Energy Science and Technology, 2015, 49(4): 719-724. DOI: 10.7538/yzk.2015.49.04.0719

基于入侵性野草算法的核动力装置故障诊断

Fault Diagnosis of Nuclear Power Plant Based on Invasive Weed Optimization Algorithm

  • 摘要: 针对船用核动力装置故障原因与相应故障征兆之间并非完全一一对应的特点,提出了一种将入侵性野草算法和概率因果模型相结合的故障诊断方法,该方法将概率因果模型中的似然函数作为入侵性野草算法的适应函数,从而将复杂系统的故障诊断转化为优化问题。结果表明,该方法能用于诊断过程中出现的不确定性问题,也可实现通过多个征兆来诊断多个故障的目的,且具有较高的诊断可靠性与实用性。

     

    Abstract: It is not completely accordant for fault reasons to match up corresponding symptoms of the marine nuclear power plant. A kind of fault diagnosis method was proposed, which is about invasive weed optimization algorithm combined with probability causal model. The probability causal model likelihood function was used as fitness function of the invasive weed optimization algorithm, after that the fault diagnosis of complex systems can be converted to optimization problem. The simulation results show that the method can not only be used for the process of diagnosis of uncertainty, but also for the purpose of multiple symptoms to multiple faults diagnose with high reliability and practicability.

     

  • [1] 杨军. 装备智能故障诊断技术[M]. 北京:国防工业出版社,2004.
    [2] 申甲斌,滕以坤. 设备状态监测与故障诊断问题分析[J]. 设备管理与维修,2008(2):10-11.SHEN Jiabin, TENG Yikun. Problem analysis for condition monitoring and fault diagnosis of equipment[J]. Plant Maintenance Engineering, 2008(2): 10-11(in Chinese).
    [3] 曾声奎,赵廷弟,张建国,等. 系统可靠性设计分析教程[M]. 北京:北京航空航天大学出版社,2000.
    [4] PATTON R J, CHEN J. Review of parity space approaches to fault diagnosis for aerospace system[J]. Journal of Guidance, Control and Dynamics, 1994, 17(2): 278-285.
    [5] 孙世国,王树青,伍斌. Luenberger鲁棒故障检测观测器的设计[J]. 浙江大学学报:工学版,2004(6):708-711.SUN Shiguo, WANG Shuqing, WU Bin. Design of Luenberger robust fault detection observer[J]. Journal of Zhejiang University: Engineering Science, 2004(6): 708-711(in Chinese).
    [6] 姚华,单贵平,孙健国. 基于卡尔曼滤波器及神经网络的发动机故障诊断[J]. 航空动力学报,2008(6):1111-1117.YAO Hua, SHAN Guiping, SUN Jianguo. Fault diagnosis for gas turbine engines based on Kalman filter and neural networks[J]. Journal of Aerospace Power, 2008(6): 1111-1117(in Chinese).
    [7] 郭玉英,朱正为,靳玉红. 基于等价空间算法的飞控系统故障诊断[J]. 西南科技大学学报,2007(2):48-60.GUO Yuying, ZHU Zhengwei, JIN Yuhong. Diagnosis of flight control system based on parity space algorithm[J]. Journal of Southwest University of Science and Technology, 2007(2): 48-60(in Chinese).
    [8] PENG Y, REGGIA J. A probabilistic causal model for diagnostic problem solving, partⅠ: Integrating symbolic causal inference with numeric probabilistic inference[J]. IEEE Trans SMC, 1987, 17(3): 146-162.
    [9] PENG Y, REGGIA J. A probabilistic causal model for diagnostic problem solving, partⅡ: Integrating symbolic causal inference with numeric probabilistic inference[J]. IEEE Trans SMC, 1987, 17(3): 395-406.
    [10] MEHRABIAN A R, LUCAS C. A novel numerical optimization algorithm inspired from weed colonization[J]. Ecological Informatics, 2006, 1(3): 355-366.
    [11] 史觊,孙建华,付明玉,等. 船舶核动力装置蒸汽发生器故障诊断系统研究[J]. 哈尔滨工程大学学报,2001,22(3):1-8.SHI Ji, SUN Jianhua, FU Mingyu, et al. The research for fault diagnosis system of marine power plant[J]. Journal of Harbin Engineering University, 2001, 22(3): 1-8(in Chinese).
    [12] 周远晖,陆玉昌,石纯一. 基于克服过早收敛的自适应并行遗传算法[J]. 清华大学学报:自然科学版,1998,38(3):93-95.ZHOU Yuanhui, LU Yuchang, SHI Chunyi. Adaptive and parallel genetic algorithm based on solving premature convergence[J]. Journal of Tsinghua University: Science and Technology, 1998, 38(3): 93-95(in Chinese).
    [13] 孔衍,任鑫,王川,等. 基于改进遗传算法的核动力装置故障诊断研究[J]. 原子能科学技术,2012, 46(11):1357-1361.KONG Yan, REN Xin, WANG Chuan, et al. Study on fault diagnosis of nuclear power plant based on improved genetic algorithm[J]. Atomic Energy Science and Technology, 2012, 46(11): 1357-1361(in Chinese).
    [14] 任鑫,孔衍,周碧松,等. 改进遗传算法在船用核动力装置概率因果故障诊断中的应用[J]. 中国舰船研究,2013,8(1):107-111. REN Xin, KONG Yan, ZHOU Bisong, et al. Application of an improved genetic algorithm in the probabilistic causal fault diagnosis for marine nuclear power plant[J]. Chinese Journal of Ship Research, 2013, 8(1): 107-111(in Chinese).
计量
  • 文章访问数:  283
  • HTML全文浏览量:  0
  • PDF下载量:  1175
  • 被引次数: 0
出版历程
  • 刊出日期:  2015-04-19

目录

    /

    返回文章
    返回