Abstract:
As one of the most important in-vessel components, the divertor withstands highly surface heat flux. In order to reduce the temperature of the divertor edge of plasma facing component by the way of improving the cooling capacity of its cooling pipes, alternative designs of cooling channel with different shapes were proposed from the perspective of cooling pipe cross-section shape. Furthermore, the fluid, thermal and structural analysis among these different designs was done with both the theoretical method and finite-element simulation. The results show that heat removal ability of cooling pipe is enhanced and local temperature of tungsten edge is improved with the increase of wetted perimeter while the cross-sectional area of cooling channel keeps the same value. Moreover, the stress concentration arises with the company of changing cross-section shape. Additionally, the heat flux in steady state operation on the basis of limit stress of material can be appropriately mitigated by increasing the length-width ratio. The analysis result could be a good basis for the design of divertor cooling structure for fusion reactor.