Abstract:
Two types of resistive heat exchangers which are cooled with nitrogen vapor are designed for the HTS current leads in EAST. The study of the thermal-hydraulic performance with multi-physics coupling simulation for the two types of resistive heat exchangers was presented in this paper. The simulation results show that the two resistive heat exchangers are almost the same in heat transfer performance, but the foil stack heat exchanger is much better than three-helical fin heat exchanger in flow performance with a low flow resistance. Considering the large pressure drop of nitrogen vapor in the three-helical fin heat exchanger, which can cause troubles for the control of pressure in the nitrogen cooling loop, the foil stack is a better choice than three-helical fin for the resistive heat exchanger in EAST HTS current leads.