福岛核事故向环境释放的Pu研究进展

倪有意, 卜文庭, 郭秋菊, 胡丹, 许宏

倪有意, 卜文庭, 郭秋菊, 胡丹, 许宏. 福岛核事故向环境释放的Pu研究进展[J]. 原子能科学技术, 2015, 49(10): 1899-1908. DOI: 10.7538/yzk.2015.49.10.1899
引用本文: 倪有意, 卜文庭, 郭秋菊, 胡丹, 许宏. 福岛核事故向环境释放的Pu研究进展[J]. 原子能科学技术, 2015, 49(10): 1899-1908. DOI: 10.7538/yzk.2015.49.10.1899
NI You-yi, BU Wen-ting, GUO Qiu-ju, HU Dan, XU Hong. Plutonium Isotopes Released from Fukushima Daiichi Nuclear Power Plant Accident into Environment[J]. Atomic Energy Science and Technology, 2015, 49(10): 1899-1908. DOI: 10.7538/yzk.2015.49.10.1899
Citation: NI You-yi, BU Wen-ting, GUO Qiu-ju, HU Dan, XU Hong. Plutonium Isotopes Released from Fukushima Daiichi Nuclear Power Plant Accident into Environment[J]. Atomic Energy Science and Technology, 2015, 49(10): 1899-1908. DOI: 10.7538/yzk.2015.49.10.1899

福岛核事故向环境释放的Pu研究进展

Plutonium Isotopes Released from Fukushima Daiichi Nuclear Power Plant Accident into Environment

  • 摘要: 福岛核事故向环境释放的放射性核素中包含了锕系元素Pu,其中以极毒组的239Pu、240Pu和高毒组的241Pu为主。本文总结并分析了针对福岛核事故向环境释放的Pu的相关研究。据估计,福岛核事故向环境中排放的239+240Pu总量约为109 Bq,是切尔诺贝利核事故排放量的万分之一。此次事故排放的Pu同位素原子比(240Pu/239Pu和241Pu/239Pu)及活度比(A(238Pu)/A(239+240Pu))明显异于全球沉降值,可作为事故中Pu溯源的判定依据。事故所排放的Pu全部来源于核电站1~3号反应堆堆芯而非乏燃料池。现有研究报道的数据表明,在福岛核电站周围30 km范围内的陆地环境中存在来自核事故排放的Pu污染,污染相对严重的“热点”区域和该地区与核电站的相对位置没有明显关联,主要是受地形和降水的影响。而对于人们关心的海洋环境,来自福岛核事故的Pu污染非常小。核事故向海洋中排放的Pu相对于核事故前海洋环境中的Pu污染水平可忽略不计。

     

    Abstract: On March 11, 2011, a catastrophic tsunami induced by a magnitude 9.0 earthquake caused the terrible Fukushima Daiichi Nuclear Power Plant (FDNPP) accident, leading to the release of a large amount of radionuclides into the environment. The published studies on plutonium isotopes in the environment after the FDNPP accident were reviewed in this paper. The total atmospheric released amounts of Pu from the FDNPP accident were estimated to be 109 Bq, that is only 1/10 000 of that released from the Chernobyl accident. The Pu isotopes were released from the damaged reactors, not from the spent fuel pools in the FDNPP. The Pu isotopic ratios (240Pu/239Pu, 241Pu/239Pu) and activity ratios of A(238Pu)/A(239+240Pu) were significantly different from that of global fallout, serving as powerful fingerprints for Pu source identification. To date, the plutonium isotopes from the accident in the terrestrial environment within the 30 km zone around the FDNPP site have been widely observed and there are no strong positive correlations between the Pu isotopes contamination levels and the distances from the FDNPP site. The influence of the FDNPP accident on Pu distributions in the marine environment is limited. No detectable Pu contamination from the accident is observed even in the near coastal (5 km off the FDNPP site) marine sediments.

     

  • [1] Exposures and effects of the Chernobyl accident[R]. New York: United National Scientific Committee on the Effects of Atomic Radiation, 2000.
    [2] KREY P W, HARDY E P, PACHUCKI C, et al. Mass isotopic composition of global fallout plutonium in soil[M]∥Transuranium Nuclides in the Environment. Vienna: IAEA, 1976.
    [3] ELLEY J M, BOND L A, BEASLEY T M. Global distribution of Pu isotopes and 237Np[J]. Science of the Total Environment, 1999, 237-238: 483-500.
    [4] STEINHAUSER G, ALEXANDER B, JOHNSO T E. Comparison of the Chernobyl and Fukushima nuclear accidents: A review[J]. Science of the Total Environment, 2014, 470: 800-817.
    [5] TSUMUNE D, TSUBONO T, AOYAMA M, et al. Distribution of oceanic 137Cs from the Fukushima Daiichi Nuclear Power Plant simulated numerically by a regional ocean model[J]. Journal of Environmental Radioactivity, 2011, 111: 100-108.
    [6] ZHENG J, KEIKO T, SHIGEO U. Release of plutonium isotopes into the environment from the Fukushima Daiichi Nuclear Power Plant accident: What is known and what needs to be known[J]. Environmental Science & Technology, 2013, 47(17): 9584-9595.
    [7] YAMAMOTO M, SAKAGUCHI A, OCHIAI S, et al. Isotopic Pu, Am and Cm signatures in environmental samples contaminated by the Fukushima Daiichi Nuclear Power Plant accident[J]. Journal of Environmental Radioactivity, 2014, 132: 31-46.
    [8] SCHNEIDER S, WALTHER C, BISTER S, et al. Plutonium release from Fukushima Daiichi fosters the need for more detailed investigations[J]. Scientific Reports, 2013, 3. DOI: 10.1038/Srep02988.
    [9] SHINONAGA T, STEIER P, LAGOS M, et al. Airborne plutonium and non-natural uranium from the Fukushima DNPP found at 120 km distance a few days after reactor hydrogen explosions[J]. Environmental Science & Technology, 2014, 48: 3808-3814.
    [10] SAKAGUCHI A, KADOKURA A, STEIER P, et al. Isotopic determination of U, Pu and Cs in environmental waters following the Fukushima Daiichi Nuclear Power Plant accident[J]. Geochemical Journal, 2012, 46(4): 355-360.
    [11] ZHENG J, AONO T, UCHIDA S, et al. Distribution of Pu isotopes in marine sediments in the Pacific 30 km off Fukushima after the Fukushima Daiichi Nuclear Power Plant accident[J]. Geochemical Journal, 2012, 46(4): 361-369.
    [12] BU W T, ZHENG J, GUO Q J, et al. A Method of measurement of 239Pu, 240Pu, 241Pu in high U content marine sediments by sector field ICP-MS and its application to Fukushima sediment samples[J]. Environmental Science & Technology, 2014, 48: 534-541.
    [13] BU W T, ZHENG J, GUO Q J, et al. Ultra-trace plutonium determination in small volume seawater by sector field inductively coupled plasma mass spectrometry with application to Fukushima seawater samples[J]. Journal of Chromatography A, 2014, 1 337: 171-178.
    [14] YAMAMOTO M, TAKADA T, NAGAO S, et al. An early survey of the radioactive contamination of soil due to the Fukushima Daiichi Nuclear Power Plant accident, with emphasis on plutonium analysis[J]. Geochemical Journal, 2012, 46: 341-353.
    [15] ZHENG J, TAGAMI K, WATANABE Y, et al. Isotopic evidence of plutonium release into the environment from the Fukushima DNPP accident[J]. Scientific Reports, 2012, 2: 304.
    [16] YOSHIDA N, YOSHIO T. Land-surface contamination by radionuclides from the Fukushima Daiichi Nuclear Power Plant accident[J]. Elements, 2012, 8: 201-206.
    [17] MEXT, DOE. Ministry of education, culture, sports, science and technology of Japan and U. S. Department of Energy[EB/OL]. [2011] (2014). http:∥radioactivity.mext.go.jp/en/contents/5000/418 2/24/1304797_0708e.pdf.
    [18] KINOSHITA N, SUEKI K, SASA K, et al. Assessment of individual radionuclide distributions from the Fukushima nuclear accident covering central-east Japan[C]∥Proceedings of the National Academy of Sciences of the United States of America. [S. l.]: [s. n.], 2011.
    [19] KATATA G, TERADA H, NAGAI H, et al. Numerical reconstruction of high dose rate zones due to the Fukushima Daiichi Nuclear Power Plant accident[J]. Journal of Environmental Radioactivity, 2011, 111: 2-12.
    [20] ZHANG Y S, ZHENG J, YAMADA M, et al. Characterization of Pu concentration and its isotopic composition in a reference fallout material[J]. Science of the Total Environment, 2010, 408: 1139-1144.
    [21] NISHIHARA K, IWAMOTO H, SUYAMA K. Estimation of fuel compositions in Fukushima Daiichi Nuclear Power Plant[R]. Japan: Japan Atomic Energy Agency, 2012.
    [22] SCHWANTES J M, ORTON C R, CLARK R A. Analysis of a nuclear accident: Fission and activation product releases from the Fukushima Daiichi nuclear facility as remote indicators of source identification, extent of release, and state of damaged spent nuclear pool[J]. Environmental Science & Technology, 2012, 46: 8621-8627.
    [23] KIRCHNER G K, BOSSEW P, de CORT M. Radioactivity from Fukushima Daiichi in air over Europe, Part2: What can it tell us about the accident?[J]. Journal of Environmental Radioactivity, 2012, 114: 35-40.
    [24] MERZ S, STEINHAUSER G, HAMADA N. Anthropogenic radionuclides in Japanese food: Environmental and legal implications[J]. Environmental Science & Technology, 2013, 47: 1248-1256.
    [25] KOMORI M, SHOZUGAWA K, NOGAWA N, et al. Evaluation of radioactive contamination caused by each plant of Fukushima Daiichi Nuclear Power Station using 134Cs/137Cs activity ratio as an index[J]. Bunseki Kagaku, 2013, 62(6): 475-483.
    [26] STOHL A, SEIBERT P, WOTAWA G, et al. Xenon-133 and caesium-137 releases into the atmosphere from the Fukushima Daiichi Nuclear Power Plant: Determination of source term, atmospheric dispersion, and deposition[J]. Atmos Chem Phys Discuss, 2011, 11: 28 319-28 394.
    [27] METI. Data on the amount of released radioactive materials[EB/OL]. [2011]. http:∥www.meti.go.jp/press/2011/10/20111020001/20111020001. pdf(accessed2012.1.26).
    [28] KRUGER F W, ALBRECHT L, SPODEN E, et al. Der ablauf des reaktorunfalls tschernobyl 4 und die weitraumige verfrachtund des freigesetzten materials: Neuere erkenntnizze und ihre bewertund in zehn jahre nach tshernobyl, eine bilanz, gustav fisher[M]. Stuttgart, Germany: [s. n.], 1996: 3-22.
    [29] IAEA, International Nuclear Safety Advisory Group. Summary report on the post-accident review meeting on the chernobyl accident, IAEA Safety Series No.75-INSAG-1[R]. Vienna: IAEA, 1986.
    [30] HARRISON R M, WARNER S F. Atmospheric pathways in SCOPE50, radioecology after chernobyl, biogeochemical pathways of artificial radionuclides[M]. Chichester, UK: [s. n.], 1993: 55-100.
    [31] DEVELL L, GUNTAY S, POWERS D A. The chernobyl reactor accident source term: Development of a consensus view[R]. Paris: Organization for Economic CoOperation and Development(OECD), 1995.
    [32] YOSHIDA N, KANDA J. Tracking the Fukushima radionuclides[J]. Science, 2012, 336: 1115-1116.
    [33] KIM C K, BYUN J I, CHAE J S, et al. Radiological impact in Korea following the Fukushima nuclear accident[J]. Journal of Environmental Radioactivity, 2012, 111: 70-82.
    [34] MEXT. Environmental radiation database[EB/OL].(2014). http:∥www.kankyo-hoshano.go.jp/08/ers lib/ers abs53.pdf.
    [35] IAEA. Sediment distribution coefficients and concentration factors for biota in the marine environment[R]. Vienna: IAEA, 2004.
    [36] BU W T, ZHENG J, AONO T, et al. Vertical distributions of plutonium isotopes in marine sediment cores off the Fukushima coast after the Fukushima Daiichi Nuclear Power Plant accident[J]. Biogeosciences, 2013, 10: 2497-2511.
    [37] BUESSELER K O. The isotopic signature of fallout plutonium in the North Pacific[J]. Journal of Environmental Radioactivity, 1997, 36(1): 69-83.
    [38] YAMADA M, ZHENG J, WANG Z L. 137Cs, 239+240Pu and 240Pu/239Pu atom ratios in the surface waters of the Western North Pacific Ocean, Eastern Indian Ocean and their adjacent seas[J]. Science of the Total Environment, 2006, 366(1): 242-252.
    [39] PERIÁÑEZ R, SUH K S, MIN B I. Should we measure plutonium concentrations in marine sediments near Fukushima?[J]. Journal of Radioanalytical and Nuclear Chemistry, 2013, 298(1): 635-638.
    [40] BU W T, FUKUDA M, ZHENG J, et al. Release of Pu isotopes from the Fukushima accident to the marine environment was negligible[J]. Environmental Science & Technology, 2014, 48: 9070-9078.
计量
  • 文章访问数:  263
  • HTML全文浏览量:  0
  • PDF下载量:  1105
  • 被引次数: 0
出版历程
  • 刊出日期:  2015-10-19

目录

    /

    返回文章
    返回