[1] |
Exposures and effects of the Chernobyl accident[R]. New York: United National Scientific Committee on the Effects of Atomic Radiation, 2000.
|
[2] |
KREY P W, HARDY E P, PACHUCKI C, et al. Mass isotopic composition of global fallout plutonium in soil[M]∥Transuranium Nuclides in the Environment. Vienna: IAEA, 1976.
|
[3] |
ELLEY J M, BOND L A, BEASLEY T M. Global distribution of Pu isotopes and 237Np[J]. Science of the Total Environment, 1999, 237-238: 483-500.
|
[4] |
STEINHAUSER G, ALEXANDER B, JOHNSO T E. Comparison of the Chernobyl and Fukushima nuclear accidents: A review[J]. Science of the Total Environment, 2014, 470: 800-817.
|
[5] |
TSUMUNE D, TSUBONO T, AOYAMA M, et al. Distribution of oceanic 137Cs from the Fukushima Daiichi Nuclear Power Plant simulated numerically by a regional ocean model[J]. Journal of Environmental Radioactivity, 2011, 111: 100-108.
|
[6] |
ZHENG J, KEIKO T, SHIGEO U. Release of plutonium isotopes into the environment from the Fukushima Daiichi Nuclear Power Plant accident: What is known and what needs to be known[J]. Environmental Science & Technology, 2013, 47(17): 9584-9595.
|
[7] |
YAMAMOTO M, SAKAGUCHI A, OCHIAI S, et al. Isotopic Pu, Am and Cm signatures in environmental samples contaminated by the Fukushima Daiichi Nuclear Power Plant accident[J]. Journal of Environmental Radioactivity, 2014, 132: 31-46.
|
[8] |
SCHNEIDER S, WALTHER C, BISTER S, et al. Plutonium release from Fukushima Daiichi fosters the need for more detailed investigations[J]. Scientific Reports, 2013, 3. DOI: 10.1038/Srep02988.
|
[9] |
SHINONAGA T, STEIER P, LAGOS M, et al. Airborne plutonium and non-natural uranium from the Fukushima DNPP found at 120 km distance a few days after reactor hydrogen explosions[J]. Environmental Science & Technology, 2014, 48: 3808-3814.
|
[10] |
SAKAGUCHI A, KADOKURA A, STEIER P, et al. Isotopic determination of U, Pu and Cs in environmental waters following the Fukushima Daiichi Nuclear Power Plant accident[J]. Geochemical Journal, 2012, 46(4): 355-360.
|
[11] |
ZHENG J, AONO T, UCHIDA S, et al. Distribution of Pu isotopes in marine sediments in the Pacific 30 km off Fukushima after the Fukushima Daiichi Nuclear Power Plant accident[J]. Geochemical Journal, 2012, 46(4): 361-369.
|
[12] |
BU W T, ZHENG J, GUO Q J, et al. A Method of measurement of 239Pu, 240Pu, 241Pu in high U content marine sediments by sector field ICP-MS and its application to Fukushima sediment samples[J]. Environmental Science & Technology, 2014, 48: 534-541.
|
[13] |
BU W T, ZHENG J, GUO Q J, et al. Ultra-trace plutonium determination in small volume seawater by sector field inductively coupled plasma mass spectrometry with application to Fukushima seawater samples[J]. Journal of Chromatography A, 2014, 1 337: 171-178.
|
[14] |
YAMAMOTO M, TAKADA T, NAGAO S, et al. An early survey of the radioactive contamination of soil due to the Fukushima Daiichi Nuclear Power Plant accident, with emphasis on plutonium analysis[J]. Geochemical Journal, 2012, 46: 341-353.
|
[15] |
ZHENG J, TAGAMI K, WATANABE Y, et al. Isotopic evidence of plutonium release into the environment from the Fukushima DNPP accident[J]. Scientific Reports, 2012, 2: 304.
|
[16] |
YOSHIDA N, YOSHIO T. Land-surface contamination by radionuclides from the Fukushima Daiichi Nuclear Power Plant accident[J]. Elements, 2012, 8: 201-206.
|
[17] |
MEXT, DOE. Ministry of education, culture, sports, science and technology of Japan and U. S. Department of Energy[EB/OL]. [2011] (2014). http:∥radioactivity.mext.go.jp/en/contents/5000/418 2/24/1304797_0708e.pdf.
|
[18] |
KINOSHITA N, SUEKI K, SASA K, et al. Assessment of individual radionuclide distributions from the Fukushima nuclear accident covering central-east Japan[C]∥Proceedings of the National Academy of Sciences of the United States of America. [S. l.]: [s. n.], 2011.
|
[19] |
KATATA G, TERADA H, NAGAI H, et al. Numerical reconstruction of high dose rate zones due to the Fukushima Daiichi Nuclear Power Plant accident[J]. Journal of Environmental Radioactivity, 2011, 111: 2-12.
|
[20] |
ZHANG Y S, ZHENG J, YAMADA M, et al. Characterization of Pu concentration and its isotopic composition in a reference fallout material[J]. Science of the Total Environment, 2010, 408: 1139-1144.
|
[21] |
NISHIHARA K, IWAMOTO H, SUYAMA K. Estimation of fuel compositions in Fukushima Daiichi Nuclear Power Plant[R]. Japan: Japan Atomic Energy Agency, 2012.
|
[22] |
SCHWANTES J M, ORTON C R, CLARK R A. Analysis of a nuclear accident: Fission and activation product releases from the Fukushima Daiichi nuclear facility as remote indicators of source identification, extent of release, and state of damaged spent nuclear pool[J]. Environmental Science & Technology, 2012, 46: 8621-8627.
|
[23] |
KIRCHNER G K, BOSSEW P, de CORT M. Radioactivity from Fukushima Daiichi in air over Europe, Part2: What can it tell us about the accident?[J]. Journal of Environmental Radioactivity, 2012, 114: 35-40.
|
[24] |
MERZ S, STEINHAUSER G, HAMADA N. Anthropogenic radionuclides in Japanese food: Environmental and legal implications[J]. Environmental Science & Technology, 2013, 47: 1248-1256.
|
[25] |
KOMORI M, SHOZUGAWA K, NOGAWA N, et al. Evaluation of radioactive contamination caused by each plant of Fukushima Daiichi Nuclear Power Station using 134Cs/137Cs activity ratio as an index[J]. Bunseki Kagaku, 2013, 62(6): 475-483.
|
[26] |
STOHL A, SEIBERT P, WOTAWA G, et al. Xenon-133 and caesium-137 releases into the atmosphere from the Fukushima Daiichi Nuclear Power Plant: Determination of source term, atmospheric dispersion, and deposition[J]. Atmos Chem Phys Discuss, 2011, 11: 28 319-28 394.
|
[27] |
METI. Data on the amount of released radioactive materials[EB/OL]. [2011]. http:∥www.meti.go.jp/press/2011/10/20111020001/20111020001. pdf(accessed2012.1.26).
|
[28] |
KRUGER F W, ALBRECHT L, SPODEN E, et al. Der ablauf des reaktorunfalls tschernobyl 4 und die weitraumige verfrachtund des freigesetzten materials: Neuere erkenntnizze und ihre bewertund in zehn jahre nach tshernobyl, eine bilanz, gustav fisher[M]. Stuttgart, Germany: [s. n.], 1996: 3-22.
|
[29] |
IAEA, International Nuclear Safety Advisory Group. Summary report on the post-accident review meeting on the chernobyl accident, IAEA Safety Series No.75-INSAG-1[R]. Vienna: IAEA, 1986.
|
[30] |
HARRISON R M, WARNER S F. Atmospheric pathways in SCOPE50, radioecology after chernobyl, biogeochemical pathways of artificial radionuclides[M]. Chichester, UK: [s. n.], 1993: 55-100.
|
[31] |
DEVELL L, GUNTAY S, POWERS D A. The chernobyl reactor accident source term: Development of a consensus view[R]. Paris: Organization for Economic CoOperation and Development(OECD), 1995.
|
[32] |
YOSHIDA N, KANDA J. Tracking the Fukushima radionuclides[J]. Science, 2012, 336: 1115-1116.
|
[33] |
KIM C K, BYUN J I, CHAE J S, et al. Radiological impact in Korea following the Fukushima nuclear accident[J]. Journal of Environmental Radioactivity, 2012, 111: 70-82.
|
[34] |
MEXT. Environmental radiation database[EB/OL].(2014). http:∥www.kankyo-hoshano.go.jp/08/ers lib/ers abs53.pdf.
|
[35] |
IAEA. Sediment distribution coefficients and concentration factors for biota in the marine environment[R]. Vienna: IAEA, 2004.
|
[36] |
BU W T, ZHENG J, AONO T, et al. Vertical distributions of plutonium isotopes in marine sediment cores off the Fukushima coast after the Fukushima Daiichi Nuclear Power Plant accident[J]. Biogeosciences, 2013, 10: 2497-2511.
|
[37] |
BUESSELER K O. The isotopic signature of fallout plutonium in the North Pacific[J]. Journal of Environmental Radioactivity, 1997, 36(1): 69-83.
|
[38] |
YAMADA M, ZHENG J, WANG Z L. 137Cs, 239+240Pu and 240Pu/239Pu atom ratios in the surface waters of the Western North Pacific Ocean, Eastern Indian Ocean and their adjacent seas[J]. Science of the Total Environment, 2006, 366(1): 242-252.
|
[39] |
PERIÁÑEZ R, SUH K S, MIN B I. Should we measure plutonium concentrations in marine sediments near Fukushima?[J]. Journal of Radioanalytical and Nuclear Chemistry, 2013, 298(1): 635-638.
|
[40] |
BU W T, FUKUDA M, ZHENG J, et al. Release of Pu isotopes from the Fukushima accident to the marine environment was negligible[J]. Environmental Science & Technology, 2014, 48: 9070-9078.
|