加速器单粒子效应样品温度测控系统研制及实验应用

蔡莉, 刘建成, 范辉, 郭刚, 史淑廷, 惠宁, 王惠, 王贵良, 沈东军, 何安林

蔡莉, 刘建成, 范辉, 郭刚, 史淑廷, 惠宁, 王惠, 王贵良, 沈东军, 何安林. 加速器单粒子效应样品温度测控系统研制及实验应用[J]. 原子能科学技术, 2015, 49(12): 2261-2265. DOI: 10.7538/yzk.2015.49.12.2261
引用本文: 蔡莉, 刘建成, 范辉, 郭刚, 史淑廷, 惠宁, 王惠, 王贵良, 沈东军, 何安林. 加速器单粒子效应样品温度测控系统研制及实验应用[J]. 原子能科学技术, 2015, 49(12): 2261-2265. DOI: 10.7538/yzk.2015.49.12.2261
CAI Li, LIU Jian-cheng, FAN Hui, GUO Gang, SHI Shu-ting, HUI Ning, WANG Hui, WANG Gui-liang, SHEN Dong-jun, HE An-lin. Development and Experimental Application of Sample Temperature Measurement and Control System for Accelerator-based Single Event Effect[J]. Atomic Energy Science and Technology, 2015, 49(12): 2261-2265. DOI: 10.7538/yzk.2015.49.12.2261
Citation: CAI Li, LIU Jian-cheng, FAN Hui, GUO Gang, SHI Shu-ting, HUI Ning, WANG Hui, WANG Gui-liang, SHEN Dong-jun, HE An-lin. Development and Experimental Application of Sample Temperature Measurement and Control System for Accelerator-based Single Event Effect[J]. Atomic Energy Science and Technology, 2015, 49(12): 2261-2265. DOI: 10.7538/yzk.2015.49.12.2261

加速器单粒子效应样品温度测控系统研制及实验应用

Development and Experimental Application of Sample Temperature Measurement and Control System for Accelerator-based Single Event Effect

  • 摘要: 为满足国内半导体器件单粒子效应(SEE)截面与温度的关系研究需求,本文基于北京HI-13串列加速器SEE辐照实验终端研制了样品温度测控系统,实现了90~450 K范围内实验样品温度的测量和控制,系统控制精度好于±1 K。为验证系统可靠性,使用该系统研究了SRAM单粒子翻转(SEU)截面随温度的变化关系,在215~353 K范围内测量了SRAM翻转截面随温度的变化曲线。结果表明,SRAM SEU截面随温度的升高而增加,与理论预期结果一致。

     

    Abstract: In order to meet domestic demands of studying the relationship between temperature and single event effect (SEE) cross-section, a device under test (DUT) temperature measurement and control system was developed based on Beijing HI-13 tandem accelerator SEE irradiation facility. The DUT temperature could be measured and controlled within the range of 90-450 K, and its control accuracy is better than ±1 K. To verify the reliability of this system, the relationship between temperature and single event upset (SEU) cross-section was investigated in 150 nm thin film transistor (TFT) technology SRAM in the temperature range of 215-353 K. The results show that the SEU cross-section increases with temperature, and it is consistent with the theoretical expected result.

     

  • [1] KOLASINSKI W A, KOGA R, SCHNAUSS E, et al. The effect of elevated temperature on latchup and bit errors in CMOS devices[J]. IEEE Trans Nucl Sci, 1986, 33: 1605-1609.
    [2] TRUYEN D, BOCH J, SAGNES B, et al. Temperature effect on heavy-ion induced parasitic current on SRAM by device simulation: Effect on SEU sensitivity[J]. IEEE Trans Nucl Sci, 2007, 54: 1025-1029.
    [3] COOPER M S, RETZLER J P. High temperature Schottky TTL latchup[J]. IEEE Trans Nucl Sci, 1978, 25: 1538-1544.
    [4] STAPOR W J, JOHNSON R L, XAPSOS M A, et al. Single event upset dependence on temperature on an NMOS/resistive-load static RAM[J]. IEEE Trans Nucl Sci, 1986, 33: 1610-1615.
    [5] MATTHEW J G, JONATHAN R A, BALAJI N, et al. Single-event transient measurements in nMOS and pMOS transistors in a 65 nm bulk CMOS technology at elevated temperatures[J]. IEEE Transactions on Device and Materials Reliability, 2011, 11: 179-186.
    [6] LARID J S, HIRAO T, ONODA S, et al. Temperature dependency of heavy ion induced current transients in Si epilayer devices[J]. IEEE Trans Nucl Sci, 2002, 49: 1389-1395.
    [7] GUO G, HIRAO T, LARID J S, et al. Temperature dependency of single event transient current by heavy ion microbeam on p+/n/n+ epilayer junctions[J]. IEEE Trans Nucl Sci, 2004, 51: 2834-2839.
    [8] TRUYEN D, BOCH J, SAGNESS B, et al. Temperature effect on heavy-ion-induced single-event transient propagation in CMOS bulk 0.18 μm inverter chain[J]. IEEE Trans Nucl Sci, 2008, 55: 2001-2006.
    [9] MATTHEW J G, JONATHAN R A, VISHWANATH R, et al. Temperature dependence of digital single-event transients in bulk and fully-depleted SOI technologies[J]. IEEE Trans Nucl Sci, 2009, 56: 3115-3121.
    [10] MATTHEW J G, JONATHAN R A, BALAJI N, et al. Increased single-event transient pulsewidths in a 90 nm bulk CMOS technology operating at elevated temperatures[J]. IEEE Transactions on Device and Materials Reliability, 2010, 10: 157-163.
    [11] CHEN S, LIANG B, LIU B, et al. Temperature dependency of digital SET pulse width in bulk and SOI technologies[J]. IEEE Trans Nucl Sci, 2007, 54: 889-893.
    [12] LIU B, CHEN S, LIANG B, et al. Temperature dependency of charge sharing and MBU sensitivity in 130 nm CMOS technology[J]. IEEE Trans Nucl Sci, 2009, 56: 2473-2479.
计量
  • 文章访问数:  334
  • HTML全文浏览量:  0
  • PDF下载量:  1374
  • 被引次数: 0
出版历程
  • 刊出日期:  2015-12-19

目录

    /

    返回文章
    返回