ERVC数值模拟研究

霍飞鹏, 闫大强, 李京浩, 王捷

霍飞鹏, 闫大强, 李京浩, 王捷. ERVC数值模拟研究[J]. 原子能科学技术, 2015, 49(zengkan1): 252-258. DOI: 10.7538/yzk.2015.49.S0.0252
引用本文: 霍飞鹏, 闫大强, 李京浩, 王捷. ERVC数值模拟研究[J]. 原子能科学技术, 2015, 49(zengkan1): 252-258. DOI: 10.7538/yzk.2015.49.S0.0252
HUO Fei-peng, YAN Da-qiang, LI Jing-hao, WANG Jie. Numerical Simulation Methodology of ERVC[J]. Atomic Energy Science and Technology, 2015, 49(zengkan1): 252-258. DOI: 10.7538/yzk.2015.49.S0.0252
Citation: HUO Fei-peng, YAN Da-qiang, LI Jing-hao, WANG Jie. Numerical Simulation Methodology of ERVC[J]. Atomic Energy Science and Technology, 2015, 49(zengkan1): 252-258. DOI: 10.7538/yzk.2015.49.S0.0252

ERVC数值模拟研究

Numerical Simulation Methodology of ERVC

  • 摘要: 压力容器外部冷却(ERVC)是AP1000的严重事故响应策略堆内熔融物滞留(IVR)中至关重要的环节,ERVC能否实现的关键是压力容器下封头是否会出现临界热流密度(CHF)。本文通过对低压过冷沸腾工况构建三维流体力学模型,对过冷沸腾实验进行模型验证,然后对AP1000 ERVC进行数值模拟研究,结合CHF模型预测压力容器外壁是否发生CHF,并与实验数据进行对比。计算结果表明,CHF不会发生,与实验相符。可见用三维数值模拟方法分析研究ERVC是可行的。

     

    Abstract: External reactor vessel cooling (ERVC) strategy is proposed to be adopted as a key issue of in-vessel retention (IVR) which is applied in AP1000 as an important method to avoid the consequences of severe accidents. Most researches concerning about the critical heat flux (CHF) of ERVC are based on experiments. This paper dedicated to explore a way with computational fluid dynamics (CFD) method to solve where CHF happens and predict the value. And Eulerian multiphase CFD models were developed to resolve wall boiling and CHF. The numerical results for CHF of ERVC were validated against existing experimental data in this paper. The calculation results indicate that CHF will not occur, which agrees well with experimental results, and it is feasible to analyze ERVC by CFD.

     

  • [1] SEHGAL B R, THEERTHAN A, GIRI A. Assessment of reactor vessel integrity(ARVI)[J]. Nuclear Engineering and Design, 2003, 221: 23-53.
    [2] CHU T Y, BENTZ J H, SLEZASEDAG S E. Ex-vessel boiling experiments: Laboratory and reactor-scale testing of the flooded cavity concept for in-vessel core retention, Part Ⅱ: Reactor-scale boiling experiments of the flooded cavity concept for in-vessel core retention[J]. Nuclear Engineering and Design, 1997, 169: 89-99.
    [3] PARK R J, HA K S, KIM S B, et al. Two-phase natural circulation flow of air and water in a reactor cavity model under an external vessel cooling during a severe accident[J]. Nuclear Engineering and Design, 2006, 236: 2424-2430.
    [4] THEOFANOUS T G, LIU C, ADDITION S, et al. In-vessel coolability and retention of a core melt[J]. Nuclear Engineering and Design, 1997, 169: 1-48.
    [5] BERGLES A E, LOPINA R F, FIORI M P. Critical-heat-flux and flow-pattern observation for low-pressure water flowing in tubes[J]. J Heat Trans, 1967, 89: 69-74.
    [6] ISHII M, HIBIKI T. Thermo-fluid dynamics of two-phase flow[M]. New York: Springer, 2011.
    [7] RANZ W E, MARSHALL W R. Evaporation from drops[J]. Chem Eng Prog, 1952, 48(3): 141-146.
    [8] KURUL N. Multidimensional effects in two-phase flow including phase change[D]. US: Rensselaer Polytechnic Institute, 1990.
    [9] KONCAR B, KLJENAK I, MAVKO B. Modeling of local two-phase flow parameters in upward subcooled flow boiling at low pressure[J]. Int J Heat Mass Transfer, 2004, 47: 1499-1513.
    [10] ISHII M, ZUBER N. Drag coefficient and relative velocity in bubbly, droplet or particulate flows[J]. AIChE J, 1979, 25: 843-855.
    [11] DREW D A, LAHEY R T, Jr. The virtual mass and lift force on a sphere in rotating and straining flow[J]. Int J Multiphase Flow, 1987, 13: 113-121.
    [12] TOMIYAMA A. Struggle with computational bubble dynamics[C]∥Proceedings of Third Int Conf Multiphase Flow (CD-ROM). Lyon: [s. n.], 1998.
    [13] ANTAL S P, LAHEY R T, Jr, FLAHERTY J E. Ana1ysis of phase distribution in fully developed laminar bubbly two-phase flow[J]. Int J Multiphase Flow, 1991, 17: 635-652.
    [14] BURNS A D B, FRANK T, HAMILL I, et al. The favre averaged drag model for turbulent dispersion in eulerian multi-phase flows[C]∥Proceedings of 5th International Conference on Multiphase Flow. Yokohama: [s.n.], 2004.
    [15] WEISMAN J, PEI B S. Prediction of critical heat flux in flow boiling at low qualities[J]. Int J Heat Mass Transfer, 1983, 26: 1463-1477.
    [16] FIORI M P, BERGLES A F. Model of critical heat flux in subcooled flow boiling[C]∥Heat Transfer 1970. Amsterdam: Elsevier Publishing Company, 1970.
    [17] LEE C H, MUDAWAR I. A mechanistic critical heat flux model for subcooled flow boiling based on local bulk flow conditions[J]. Int J Multiphase Flow, 1988, 14: 711-728.
    [18] LEE T H. Local flow characteristics of subcooled boiling flow of water in a vertical concentric annulus[J]. International Journal of Multiphase Flow, 2002, 28: 1351-1368.
    [19] DINH T, TU J P, SALMASSI T, et al. Limits of coolability in the AP1000-related ULPU-2400 configuration Ⅴ facility[R]. US: [s. n.], 2003.
计量
  • 文章访问数:  284
  • HTML全文浏览量:  0
  • PDF下载量:  1108
  • 被引次数: 0
出版历程
  • 刊出日期:  2015-05-19

目录

    /

    返回文章
    返回