套管型自然循环回路不稳定现象分析

吴祥成, 阎昌琪

吴祥成, 阎昌琪. 套管型自然循环回路不稳定现象分析[J]. 原子能科学技术, 2016, 50(6): 1008-1013. DOI: 10.7538/yzk.2016.50.06.1008
引用本文: 吴祥成, 阎昌琪. 套管型自然循环回路不稳定现象分析[J]. 原子能科学技术, 2016, 50(6): 1008-1013. DOI: 10.7538/yzk.2016.50.06.1008
WU Xiang-cheng, YAN Chang-qi. Instable Phenomenon Analysis of Thimble Tube-type Natural Circulation Loop[J]. Atomic Energy Science and Technology, 2016, 50(6): 1008-1013. DOI: 10.7538/yzk.2016.50.06.1008
Citation: WU Xiang-cheng, YAN Chang-qi. Instable Phenomenon Analysis of Thimble Tube-type Natural Circulation Loop[J]. Atomic Energy Science and Technology, 2016, 50(6): 1008-1013. DOI: 10.7538/yzk.2016.50.06.1008

套管型自然循环回路不稳定现象分析

Instable Phenomenon Analysis of Thimble Tube-type Natural Circulation Loop

  • 摘要: 为解决熔盐堆排盐罐中熔盐衰变热稳定导出问题,针对套管型自然循环回路开展了不稳定现象研究实验,对实验中观察到的现象和获得的测量数据进行了分析。实验结果表明,中心管对流体预热作用明显,水箱入口温度较低时流体通过中心管后温升高达40 ℃;上升段出口液面波动过程中会出现多个波峰,第1个为主峰,其他为附峰;附峰的持续时间一般会长于主峰;水箱入口水温波动频率高于压力等其他参数。不稳定振荡发生时水箱温度均有一定的过冷度。振荡的周期性不明显,流动存在低频振荡的耦合情况。振荡周期与沸腾延迟时间正向最大偏差为71%,负向最大偏差为37%。

     

    Abstract: In order to remove decay heat safely from the drain tank, instability research experiment was carried out in thimble tube-type natural circulation loop. The observed phenomena and collected data were analyzed. The results show that the fluid flowing in the center pipe is preheated obviously. Several wave peaks appear when the liquid level goes up and down at the outlet of the heat transfer tube. The first one is called for main peak. Others are called for subordinate peaks. Duration time of subordinate peaks is often longer than that of main peak. Oscillation frequency of temperature at the inlet is higher than those of other parameters. Water in the tank is subcooled when the oscillations occur. The period of oscillation is not obvious. There exists coupling between low frequency oscillations. The positive maximum deviation between the period of oscillation and boiling delay time is 71%, and the negative maximum deviation is 37%.

     

  • [1] KURAN S, XU Y, SUN X, et al. Startup transient simulation for natural circulation boiling water reactors in puma facility[J]. Nuclear Engineering and Design, 2006, 236(22): 2365-2375.
    [2] ARITOMI M, CHIANG J H, NAKAHASHI T, et al. Fundamental study on thermo-hydraulics during start-up in natural circulation boiling water reactors (Ⅰ)[J]. Journal of Nuclear Science and Technology, 1992, 29(7): 631-641.
    [3] 袁添鸿,于雷,王川. 全厂断电事故下AP1000非能动余热排出系统分析[J]. 原子能科学技术,2010,44(增刊):248-252.YUAN Tianhong, YU Lei, WANG Chuan. Research on passive residual heat remove system under loss of power[J]. Atomic Energy Science and Technology, 2010, 44(Suppl.): 248-252(in Chinese).
    [4] SUN L, SUN L, YAN C, et al. Conceptual design and analysis of a passive residual heat removal system for a 10 MW Molten Salt Reactor experiment[J]. Progress in Nuclear Energy, 2014, 70: 149-158.
    [5] BOURE J A, BERGLES A E, TONG L S. Review of two-phase flow instability[J]. Nuclear Engineering and Design, 1973, 25(2): 165-192.
    [6] FURUYA M, INADA F, THJJVD H. Flashing-induced density wave oscillations in a natural circulation BWR: Mechanism of instability and stability map[J]. Nuclear Engineering and Design, 2005, 235(15): 1557-1569.
    [7] TANIMOTO K, ISHII M, LEE Y S. Examination of transient characteristics of two-phase natural circulation within a Freon-113 boiling/condensation loop[J]. Nuclear Engineering and Design, 1998, 183(1-2): 77-95.
    [8] TONG L L, SHAO G, YUAN K, et al. An experimental study on Geysering phenomena induced by buoyancy in a heating system[J]. Annals of Nuclear Energy, 2014, 63: 129-137.
    [9] ZHANG L, FAN L, HUA M, et al. An indoor experimental investigation of the thermal performance of a TPLT-based natural circulation steam generator as applied to PTC systems[J]. Applied Thermal Engineering, 2014, 62(2): 330-340.
    [10] ROBORTSON R C. MSRE design and operation report Ⅰ[R]. Tennessee: US Atomic Energy Commission, 1965.
    [11] 戚展飞,佟立丽,曹学武. 加热系统间歇泉流动现象初步实验研究[J]. 核动力工程,2012,33(S1):64-68.QI Zhanfei, TONG Lili, CAO Xuewu. Preliminary experimental study on geysering phenomena in heating system[J]. Nuclear Power Engineering, 2012, 33(S1): 64-68(in Chinese).
    [12] OZAWA M, NAKANISHI S, ISHIGAI S, et al. Flow instabilities in boiling channels, Part 2: Geysering[J]. Bulletin of JSME, 1979, 22(170): 1119-1126.
    [13] KUNCORO H, RAO Y F, FUKUDA K. An experimental study on the mechanism of geysering in a closed two-phase thermosyphon[J]. International Journal of Multiphase Flow, 1995, 21(6): 1243-1252.
计量
  • 文章访问数:  155
  • HTML全文浏览量:  0
  • PDF下载量:  1015
  • 被引次数: 0
出版历程
  • 刊出日期:  2016-06-19

目录

    /

    返回文章
    返回