利用伴随α粒子能谱分析固体氚靶中氚浓度深度分布

祝庆军, 鲍杰, 赖财锋, 朱通华, 高芳芳, 李佳, 刘松林

祝庆军, 鲍杰, 赖财锋, 朱通华, 高芳芳, 李佳, 刘松林. 利用伴随α粒子能谱分析固体氚靶中氚浓度深度分布[J]. 原子能科学技术, 2016, 50(9): 1544-1549. DOI: 10.7538/yzk.2016.50.09.1544
引用本文: 祝庆军, 鲍杰, 赖财锋, 朱通华, 高芳芳, 李佳, 刘松林. 利用伴随α粒子能谱分析固体氚靶中氚浓度深度分布[J]. 原子能科学技术, 2016, 50(9): 1544-1549. DOI: 10.7538/yzk.2016.50.09.1544
ZHU Qing-jun, BAO Jie, LAI Cai-feng, ZHU Tong-hua, GAO Fang-fang, LI Jia, LIU Song-lin. Depth Profile of Tritium Concentration in Solid Tritium Target Using Associated Alpha Particle Spectrum[J]. Atomic Energy Science and Technology, 2016, 50(9): 1544-1549. DOI: 10.7538/yzk.2016.50.09.1544
Citation: ZHU Qing-jun, BAO Jie, LAI Cai-feng, ZHU Tong-hua, GAO Fang-fang, LI Jia, LIU Song-lin. Depth Profile of Tritium Concentration in Solid Tritium Target Using Associated Alpha Particle Spectrum[J]. Atomic Energy Science and Technology, 2016, 50(9): 1544-1549. DOI: 10.7538/yzk.2016.50.09.1544

利用伴随α粒子能谱分析固体氚靶中氚浓度深度分布

Depth Profile of Tritium Concentration in Solid Tritium Target Using Associated Alpha Particle Spectrum

  • 摘要: 在目前的氘氚中子发生器源中子分析过程中,固体氚靶中氚浓度深度分布信息的缺失是普遍遇到的问题。为解决此问题,本文建立了利用伴随粒子能谱反演氚浓度深度分布的模型,采用来自氚钛靶的α实验能谱作为模型测试对象,通过该模型获得了氚钛靶中氚浓度深度分布的数据。结果表明,氚浓度随氚钛靶深度的增加呈双峰趋势,两峰之间的氚浓度波谷位于靶中0.94 μm处,该深度正是入射氘粒子的射程极限。所得的氚浓度深度分布趋势与其他实验方法测量结果相符,表明该模型能为氘氚中子发生器的源中子分析提供即时的氚浓度深度分布信息。

     

    Abstract: Currently in the analysis of source neutron of D-T neutron generator, the lack of the information of the depth profile of tritium concentration in solid tritide target is a common problem. To overcome this problem, a inversion model to study the depth profile of tritium concentration in the source target using the associated alpha spectrum was built, the reported alpha spectrum from T(d, n) 4He reaction was used as a test input for the model, and the depth profile of tritium concentration in titanium tritide target was acquired. The results show that the depth profile of the tritium concentration in the titanium tritide target presents bimodal distribution, and the tritium concentration bottom between two peaks locates at 0.94 μm of target thickness, which is the range limit of the inject deuterium ions. The similar trend was found in the available research using others techniques. The presented method can provide real-time depth profile of tritium concentration to source neutron analysis of the D-T neutron generator.

     

  • [1] LÖVESTAM G. EnergySet: A programme to calculate accelerator settings and neutron yield data for the IRMM VdG Laboratory, JRC-IRMM Internal Report GER/NP/2/2002/06/20[R]. Geel, Belgium: IRMM VdG Laboratory, 2002.
    [2] BIRGERSSON E, LÖVESTAM G. NeuSDesc: Neutron source description software manual, EUR report 23794[R]. Luxemburg, European Communities: Office for Official Publications of the European Communities, 2008.
    [3] DROSG M. DROSG-2000: Codes and database for 59 neutron source reactions, IAEA-NDS-87[R]. Vienna: IAEA, 2005.
    [4] SCHLEGEL D. TARGET user’s manual PTB laboratory report, PTB-6.42-05-2[R]. Braunschweig, Germany: PTB Laboratory, 2005.
    [5] MILOCCO A, TRKOV A. Modelling of the production of source neutrons from low-voltage accelerated deuterons on titanium-tritium targets[J]. Science & Technology of Nuclear Installations, 2008: 340282.
    [6] PILLON M, MARTONE M, RADO V. Characterization of the source neutrons produced by the Frascati neutron generator[J]. Fusion Engineering & Design, 1995, 28(S1-2): 683-688.
    [7] MILOCCO A, TRKOV A, PILLON M. A Monte Carlo model for low energy D-D neutron generators[J]. Nuclear Instruments & Methods in Physics Research, 2012, 271(1): 6-12.
    [8] 中国原子能科学研究院快中子激发曲线组. 加速器单能中子源常用数据手册[M]. 北京:中国原子能科学研究院,1976:218.
    [9] 姚泽恩,岳伟明,罗鹏,等. 厚靶T(d,n) 4He反应加速器中子源的中子产额、能谱和角分布[J]. 原子能科学技术,2008,42(5):400-403.YAO Zeen, YUE Weiming, LUO Peng, et al. Neutron yield, energy spectrum and angular distribution of accelerator based T(d,n)4He reaction neutron source for thick target[J]. Atomic Energy Science and Technology, 2008, 42(5): 400-403(in Chinese).
    [10] 岳伟明. D-T中子发生器中子产额、能谱、角分布及中子伽玛混合场的模拟研究[D]. 兰州:兰州大学,2008.
    [11] 罗顺忠,杨本福,龙兴贵. 中子发生器用氚靶的研究进展[J]. 原子能科学技术,2002,36(4/5):290-296.LUO Shunzhong, YANG Benfu, LONG Xinggui. Research progress on tritide target in neutron generator[J]. Atomic Energy Science and Technology, 2002, 36(4/5): 290-296(in Chinese).
    [12] PEREVEZENTSEV A N, BELL A C, RIVKIS L A, et al. Comparative study of the tritium distribution in metals[J]. Journal of Nuclear Materials, 2008, 372(2-3): 263-276.
    [13] DAVIS J C, ANDERSON J D. Tritium depth profiling by neutron time-of-flight[J]. Journal of Vacuum Science & Technology, 1975, 12(1): 358-360.
    [14] 李景德,谢大全,陈淑英,等. 用飞行时间法测量氚的深度分布[J]. 核技术,1987(7):22-23,38.LI Jingde, XIE Daquan, CHEN Shuying, et al. Measurement of tritium depth profile by flight time method[J]. Nuclear Techniques, 1987(7): 22-23, 38(in Chinese).
    [15] 丁伟,施立群,龙兴贵. PBS法测量Ti膜中H同位素深度分布[J]. 原子能科学技术,2010,44(增刊):563-565. DING Wei, SHI Liqun, LONG Xinggui. Measurement of H isotope profile in Ti film with PBS method[J]. Atomic Energy Science and Technology, 2010, 44(Suppl.): 563-565(in Chinese).
    [16] HOSHIHIRA T, OTSUKA T, TANABE T. Visualization of hydrogen distribution around blisters by tritium radio-luminography[J]. Journal of Nuclear Materials, 2009, 386(5): 776-779.
    [17] 董艾平,李文杰,王强. 氘轰击下氚靶中氚浓度深度分布的变换[J]. 东北师大学报:自然科学版,1991(2):35-38.DONG Aiping, LI Wenjie, WANG Qiang. The depth profile of tritium in TTI target under deuterium irradiation[J]. Journal of Northeast Normal University: Natural Science, 1991(2): 35-38(in Chinese).
    [18] 赖财锋,秦建国,徐家云. 氘束轰击下氚钛靶中氚浓度的深度分布研究[C]∥第三届全国核技术与应用学术研讨会会议资料文集. 北京:中国核物理学会,2012.
    [19] ZIEGLER J F, ZIEGLER M D, BIERSACK J P. SRIM: The stopping and range of ions in matter[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2010, 268(11): 1818-1823.
    [20] 王黎明. 高压倍加器14 MeV实际中子场研究[D]. 北京:中国原子能科学研究院,2007.
    [21] 仲启平,陈雄军,卢涵林,等. 伴随粒子法测量T(d,n)4He中子源注量率中的本底处理[J]. 原子能科学技术,2005,39(2):130-133.ZHONG Qiping, CHEN Xiongjun, LU Hanlin, et al. Background analysis for an associated particle method to measure the neutron fluence rate from the T(d,n)4He neutron source[J]. Atomic Energy Science and Technology, 2005, 39(2): 130-133(in Chinese).
计量
  • 文章访问数:  466
  • HTML全文浏览量:  1
  • PDF下载量:  1137
  • 被引次数: 0
出版历程
  • 刊出日期:  2016-09-19

目录

    /

    返回文章
    返回