UD3的表面钝化和氧化特性研究

陈登磊, 褚明福, 齐连柱, 程亮

陈登磊, 褚明福, 齐连柱, 程亮. UD3的表面钝化和氧化特性研究[J]. 原子能科学技术, 2016, 50(9): 1550-1555. DOI: 10.7538/yzk.2016.50.09.1550
引用本文: 陈登磊, 褚明福, 齐连柱, 程亮. UD3的表面钝化和氧化特性研究[J]. 原子能科学技术, 2016, 50(9): 1550-1555. DOI: 10.7538/yzk.2016.50.09.1550
CHEN Deng-lei, CHU Ming-fu, QI Lian-zhu, CHENG Liang. Research on Superficial Passivation and Oxidation Characteristic of UD3[J]. Atomic Energy Science and Technology, 2016, 50(9): 1550-1555. DOI: 10.7538/yzk.2016.50.09.1550
Citation: CHEN Deng-lei, CHU Ming-fu, QI Lian-zhu, CHENG Liang. Research on Superficial Passivation and Oxidation Characteristic of UD3[J]. Atomic Energy Science and Technology, 2016, 50(9): 1550-1555. DOI: 10.7538/yzk.2016.50.09.1550

UD3的表面钝化和氧化特性研究

Research on Superficial Passivation and Oxidation Characteristic of UD3

  • 摘要: 本文研究了UD3的表面钝化和氧化特性。利用XRD、激光拉曼技术观察到钝化的UD3表面致密保护层的主要成分为UO2。利用量热法研究了钝化的UD3在空气中的氧化自燃特性,结果显示:当反应温度低于110 ℃时,钝化的UD3在空气中反应缓慢;当反应温度高于130 ℃时,钝化的UD3表面保护层被破坏,UD3在空气中剧烈氧化,钝化的UD3的自燃温度约为140 ℃。

     

    Abstract: The superficial passivation and oxidation characteristics of UD3 were researched in this paper. The passivated UD3 was analyzed by XRD and Raman measurements, and it was found that the protective layer of the passivated UD3 is mainly UO2. The oxidized characteristic of the passivated UD3 was performed in a thermal analyser in the air. The ignition didn’t occur at room temperature. When the reaction temperature is lower than 110 ℃, the passivated UD3 reacts slowly in the air. When the reaction temperature is higher than 130 ℃, the protective layer of the passivated UD3 is damaged, and the UD3 reacts violently in the air. The ignition occurrs at about 140 ℃.

     

  • [1] 安民,何彬,左广霞,等. 氘氚化铀分子的结构及热力学稳定性[J]. 核技术,2011,34(8):618-621.AN Min, HE Bin, ZUO Guangxia, et al. Structure and thermodynamic stability of UD3 and UT3 molecules[J]. Nuclear Techniques, 2011, 34(8): 618-621(in Chinese).
    [2] BARTSCHER W, BOEUF A, CACIUFFO R, et al. Neutron diffraction study of β-UD3 and β-UH3[J]. Solid State Communications, 1985, 53(4): 423-426.
    [3] 黄刚,龙兴贵,梁建华,等. 铀吸、放氘/氚的热力学同位素效应[J]. 原子能科学技术,2010,44(增刊):102-105.HUANG Gang, LONG Xinggui, LIANG Jianhua, et al. Thermodynamic isotope effects of D2 and T2 reaction with uranium[J]. Atomic Energy Science and Technology, 2010, 44(Suppl.): 102-105(in Chinese).
    [4] ABRAHAM B M, FLOTOW H E. The heats of formation of uranium hydride, uranium deuteride and uranium tritide at 25 ℃[J]. Journal of the American Chemical Society, 1955, 77(6): 1446-1448.
    [5] IMOTO S, TANABE T, UTSUNOMIYA K. Separation of hydrogen isotopes with uranium hydride[J]. International Journal of Hydrogen Energy, 1982, 7(7): 597-601.
    [6] 黄刚,龙兴贵,梁建华,等. 氘/氚化铀热解吸的动力学同位素效应[J]. 原子能科学技术,2010,44(8):926-929.HUANG Gang, LONG Xinggui, LIANG Jianhua, et al. Kinetic isotope effects of desorption for uranium deuteride and uranium tritide[J]. Atomic Energy Science and Technology, 2010, 44(8): 926-929(in Chinese).
    [7] SCHNAARS D D, WU G, HAYTON T W. Reactivity of UH3 with mild oxidants[J]. Dalton Transactions, 2008, 44: 6121-6126.
    [8] GUYADEC F L, NIN G X, BAYLE J P, et al. Pyrophoric behaviour of uranium hydride and uranium powders[J]. Journal of Nuclear Materials, 2010, 396(2-3): 294-302.
    [9] TOTEMEIER T. Characterization of uranium corrosion products involved in a uranium hydride pyrophoric event[J]. Journal of Nuclear Materials, 2000, 278(2): 301-311.
    [10] LONGHURST G R, HEICS A G, SHMAYDA W T, et al. Experimental evaluation of the consequences of uranium bed airingress accidents[J]. Fusion Science and Technology, 1992, 21: 1017-1023.
    [11] ROBINSON S, THOMAS G. Uranium hydride formation and properties: A review with commentary on handling and disposition, SAND96-8206[R]. Albuquerque: Sandia National Laboratory, 1996.
    [12] ABLITZER C, le GUYADEC F, RAYNAL J, et al. Influence of superficial oxidation on the pyrophoric behaviour of uranium hydride and uranium powders in air[J]. Journal of Nuclear Materials, 2013, 432(1-3): 135-145.
    [13] SHUGARD A D, BUFFLEBEN G M, KANOUFF M P, et al. Rapid hydrogen gas generation using reactive thermal decomposition of uranium hydride, SAND2011-6939[R]. Albuquerque: Sandia National Laboratory, 2011.
    [14] KANOUFF M P, GHARAGOZLOO P E, SALLOUM M, et al. A multiphysics numerical model of oxidation and decomposition in a uranium hydride bed[J]. Chemical Engineering Science, 2013, 91: 212-225.
    [15] MORRALL P, PRICE D W, NELSON A J, et al. ToF-SIMS characterization of uranium hydride[J]. Philosophical Magazine Letters, 2007, 87(8): 541-547.
    [16] 吕俊波,李赣,郭淑兰. 非理想化学计量比氧化铀的拉曼和红外光谱[J]. 光谱学与光谱分析,2014,34(2):405-409.LV Junbo, LI Gan, GUO Shulan. Raman and ifrared spectra of non-stoichiometry uranium oxides[J]. Spectroscopy and Spectral Analysis, 2014, 34(2): 405-409(in Chinese).
    [17] MCEACHERN R J, DOERN D C, WOOD D D. The effect of rare-earth fission products on the rate of U3O8 formation on UO2[J]. Journal of Nuclear Materials, 1998, 252(1-2): 145-149.
计量
  • 文章访问数:  333
  • HTML全文浏览量:  0
  • PDF下载量:  1053
  • 被引次数: 0
出版历程
  • 刊出日期:  2016-09-19

目录

    /

    返回文章
    返回