非凝性气体对汽-气稳压器稳压的影响研究

Effect of Non-condensable Gas on Steam-gas Pressurizer

  • 摘要: 通过分析相间的传热传质过程以及非凝性气体存在时壁面蒸汽冷凝过程,建立了汽气稳压器模型,研究了非凝性气体对稳压过程的影响,描述了稳压器的稳压特性,并将模型计算结果与MIT稳压器实验数据进行了对比。结果表明:当不含非凝性气体时,计算精度高,相对偏差在0.8%内,压力峰值为0.647 MPa;当非凝性气体含量从0增至20%时,计算精度相对减小,最高相对偏差为15.4%;压力峰值从0.647 MPa增至1.02 MPa。研究表明非凝性气体对稳压器稳压过程具有重要影响作用,随着非凝性气体的种类和含量的变化,稳压器内稳压过程发生显著变化。

     

    Abstract: The heat and mass transfers in the interface of steam and liquid and condensation near the wall with non-condensable gas were analyzed. A steam-gas pressurizer model was developed, the process of pressure transient in the pressurizer with the non-condensable gas was investigated and the thermal-hydraulic characteristics of a steam-gas pressurizer were described. The calculation results were verified with the results from the MIT pressurizer experiment. The results show that the calculation accuracy using pressurizer model without non-condensable gas is high, the relative deviation is 0.8% and the peak pressure is 0.647 MPa. When the mass fraction of non-condensable gas is from 0 to 20%, the calculation accuracy decreases, the maximum relative deviation is 15.4% and the peak pressure is from 0.647 MPa to 1.02 MPa. It’s found that the non-condensable gas plays an important role on the pressure response in the gas-steam pressurizer. When the mass fraction and varieties of non-condensable gas are different, the pressure response in the pressurizer is significantly different.

     

/

返回文章
返回