AP1000非能动余热排出热交换器缩比C型管束二次侧传热模型实验研究

张钰浩, 陆道纲, 王忠毅, 吴广皓, 傅孝良, 杨燕华

张钰浩, 陆道纲, 王忠毅, 吴广皓, 傅孝良, 杨燕华. AP1000非能动余热排出热交换器缩比C型管束二次侧传热模型实验研究[J]. 原子能科学技术, 2016, 50(10): 1763-1770. DOI: 10.7538/yzk.2016.50.10.1763
引用本文: 张钰浩, 陆道纲, 王忠毅, 吴广皓, 傅孝良, 杨燕华. AP1000非能动余热排出热交换器缩比C型管束二次侧传热模型实验研究[J]. 原子能科学技术, 2016, 50(10): 1763-1770. DOI: 10.7538/yzk.2016.50.10.1763
ZHANG Yu-hao, LU Dao-gang, WANG Zhong-yi, WU Guang-hao, FU Xiao-liang, YANG Yan-hua. Experimental Investigation on Heat Transfer Model for Secondary Side of Scaled C-shape Bundle Used in PRHR HX of AP1000[J]. Atomic Energy Science and Technology, 2016, 50(10): 1763-1770. DOI: 10.7538/yzk.2016.50.10.1763
Citation: ZHANG Yu-hao, LU Dao-gang, WANG Zhong-yi, WU Guang-hao, FU Xiao-liang, YANG Yan-hua. Experimental Investigation on Heat Transfer Model for Secondary Side of Scaled C-shape Bundle Used in PRHR HX of AP1000[J]. Atomic Energy Science and Technology, 2016, 50(10): 1763-1770. DOI: 10.7538/yzk.2016.50.10.1763

AP1000非能动余热排出热交换器缩比C型管束二次侧传热模型实验研究

Experimental Investigation on Heat Transfer Model for Secondary Side of Scaled C-shape Bundle Used in PRHR HX of AP1000

  • 摘要: 建立了非能动余热排出热交换器(PRHR HX)及内置换料水箱(IRWST)分离效应缩比实验系统,研究了PRHR HX排出堆芯余热过程中,单相自然对流阶段及两相池式沸腾阶段下的传热特性,并采用实验数据评价了传统经验关系式在预测PRHR HX缩比模型特殊C型传热管束时的适用性。实验结果表明,在PRHR HX余热排出过程中,IRWST内出现明显热分层现象。对于PRHR HX竖直管束自然对流、池式沸腾传热,传统经验关系式预测值均较为保守;对于下部水平管束,自然对流阶段推荐Churchill自然对流传热公式,池式沸腾阶段推荐Rohsenow经典池式沸腾传热公式;上部水平管束由于受到流体浮升、气泡扰动等因素的附加影响,在自然对流阶段及池式沸腾阶段的传热效果均优于下部水平管束。

     

    Abstract: The separate-effect overall scaled-down passive residual heat removal heat exchanger (PRHR HX) and in-containment refueling water storage tank (IRWST) experiment was conducted to investigate the secondary side heat transfer characteristics of the scaled C-shape bundle used in PRHR HX in both the single-phase natural convection stage and the two-phase boiling heat transfer stage. The experimental data were used to validate the traditional heat transfer correlations predicting the heat transfer effects of PRHR HX. The experimental results indicate that the thermal stratification phenomenon is very obvious in the heat removal process. For the vertical bundle of PRHR HX, the traditional correlations tend to be conservative in both the single-phase and two-phase heat transfer processes. In the aspect of the lower horizontal bundle, the Churchill correlation is recommended in natural convection stage, and the Rohsenow pool boiling correlation is appropriate in the boiling heat transfer stage. However, for the upper horizontal bundle, because of the additional influences of the buoyancy effects and agitation of the fluid and bubbles, the heat transfer effects are better than those of the lower horizontal bundle.

     

  • [1] 林诚格,郁祖盛. 非能动安全先进压水堆核电技术[M]. 北京:原子能出版社,2008.
    [2] Final safety evaluation report related to certification of the AP1000 standard design, NUREG-1793[R]. Washington: U.S. Nuclear Regulatory Commission, 2004.
    [3] 李勇,阎昌琪,孙福荣,等. 非能动余热排出换热器运行初始阶段换热特性研究[J]. 原子能科学技术,2011,45(8):931-936.LI Yong, YAN Changqi, SUN Furong, et al. Research on heat transfer characteristic of PRHR HX at initial operating stage[J]. Atomic Energy Science and Technology, 2011, 45(8): 931-936(in Chinese).
    [4] CHUN M H, KANG M G. Effects of heat exchanger tube geometries on nucleate pool boiling heat transfer in a scaled in-containment refueling water storage tank[J]. International Communications in Heat and Mass Transfer, 1996, 23(1): 23-34.
    [5] 薛若军,邓程程,彭敏俊. 非能动余热排出热交换器数值模拟[J]. 原子能科学技术,2010,44(4):429-435.XUE Ruojun, DENG Chengcheng, PENG Minjun. Numerical simulation of passive residual heat removal heat exchanger[J]. Atomic Energy Science and Technology, 2010, 44(4): 429-435(in Chinese).
    [6] 潘新新. 非能动余热交换器瞬态换热特性数值模拟及敏感性分析[J]. 核动力工程,2010,31(S1):97-102.PAN Xinxin. Numerical study and sensitivity analysis of PRHR HX transient heat transfer performance[J]. Nuclear Power Engineering, 2010, 31(S1): 97-102(in Chinese).
    [7] 薛若军,邓程程,李朝君,等. 自然循环换热器壳侧传热及流动的数值模拟[J]. 原子能科学技术,2012,46(2):192-198.XUE Ruojun, DENG Chengcheng, LI Chaojun, et al. Numerical simulation of shell-side heat transfer and flow of natural circulation heat exchanger[J]. Atomic Energy Science and Technology, 2012, 46(2): 192-198(in Chinese).
    [8] 王盟,陈薇,吕焱燊. 非能动余热排出换热器优化设计研究[J]. 原子能科学技术,2015,49(3):455-459.WANG Meng, CHEN Wei, LV Yanshen. Research on optimal design of passive residual heat removal heat exchanger[J]. Atomic Energy Science and Technology, 2015, 49(3): 455-459(in Chinese).
    [9] ZHANG Yuhao, LU Daogang, DU Zheng. Numerical and experimental investigation on the transient heat transfer characteristics of C-shape rod bundles used in passive residual heat removal heat exchangers[J]. Annals of Nuclear Energy, 2015, 83: 147-160.
    [10] 杨世铭,陶文铨. 传热学[M]. 北京:高等教育出版社,2006.
    [11] NAGENDRA H R, TIRUNARAYANAN M A, RAMACHANDRAN A. Free convection heat transfer from vertical cylinders and wires[J]. Chemical Engineering Science, 1969, 24(9): 1491-1495.
    [12] CHURCHILL S W, CHU H H S. Correlating equations for laminar and turbulent free convection from a vertical plate[J]. International Journal of Heat and Mass Transfer, 1975, 18(11): 1323-1329.
    [13] GUPTA A, KUMAR R, KUMAR V. Nucleate pool boiling heat transfer over a bundle of vertical tubes[J]. International Communications in Heat and Mass Transfer, 2010, 37(2): 178-181.
计量
  • 文章访问数:  343
  • HTML全文浏览量:  0
  • PDF下载量:  1233
  • 被引次数: 0
出版历程
  • 刊出日期:  2016-10-19

目录

    /

    返回文章
    返回