紧凑型中高能同步加速器的物理设计

黄良生, 王生

黄良生, 王生. 紧凑型中高能同步加速器的物理设计[J]. 原子能科学技术, 2016, 50(10): 1887-1891. DOI: 10.7538/yzk.2016.50.10.1887
引用本文: 黄良生, 王生. 紧凑型中高能同步加速器的物理设计[J]. 原子能科学技术, 2016, 50(10): 1887-1891. DOI: 10.7538/yzk.2016.50.10.1887
HUANG Liang-sheng, WANG Sheng. Physics Design of Compact Middle and High Energy Synchrotron[J]. Atomic Energy Science and Technology, 2016, 50(10): 1887-1891. DOI: 10.7538/yzk.2016.50.10.1887
Citation: HUANG Liang-sheng, WANG Sheng. Physics Design of Compact Middle and High Energy Synchrotron[J]. Atomic Energy Science and Technology, 2016, 50(10): 1887-1891. DOI: 10.7538/yzk.2016.50.10.1887

紧凑型中高能同步加速器的物理设计

Physics Design of Compact Middle and High Energy Synchrotron

  • 摘要: 本文采用束流光学匹配软件优化组合磁铁布局得到一种紧凑型的同步加速器。该加速器具有周长短、磁铁孔径小、束流品质高等优点。注入和引出设计是此同步加速器的关键点,基于Matlab/AT开发了模拟软件,模拟研究注入和引出相关束流动力学问题。研究结果表明,该同步加速器束流品质优、注入效率高、引出束流损失低。该同步加速器可满足航天、材料和生物等多方面研究。

     

    Abstract: A compact synchrotron was designed based on beam optical software. The advantages of the synchrotron are small circumference, small aperture of magnet and high beam quality. The design of injection and extraction is very important for the synchrotron. Based on Matlab/AT, a simulation code of injection and extraction was developed, and the dynamic of injection and extraction process was studied. The result shows that the beam in the synchrotron has high quality, high injection rate and low beam loss in extraction process. The synchrotron can be used to study of spaceflight, material and biology.

     

  • [1] SCHIMMERLING W. Space and radiation protection scientific requirements for space research[J]. Radiation and Environmental Biophysics, 1995, 34(3): 133-137.
    [2] FOURNIER C, BECKER D, WINTER M, et al. Cell cycle-related bystander responses are not increased with LET after heavy-ion irradiation[J]. Radiation Research, 2007, 167(2): 194-206.
    [3] KAMIYA T, SAKAI T, HIRAO T, et al. Observation of radiation damage induced by sing-ion hits at the heavy ion microbeam system[J]. Nuclear Instruments and Methods in Physics Research B, 2001, 181(1): 280-285.
    [4] KOBAYASHI Y, FUNAYAMA T, WADA S, et al. Microbeams of heavy charged particles[J]. Biological Sciences in Space, 2004, 18(4): 235-240.
    [5] KANG H, SUH H. Proceeding of European Particles Accelerator Conference[C]. Genoa: EPS-AG Press, 2008.
    [6] WANG S. Concept design of the aerospace irradiation accelerator[R]. Beijing: IHEP, 2012.
    [7] LUO X, GUO Z, HAN Q, et al. The lattice design of a proposed Beijing Therapy Proton Synchrotron[R]. Beijing: IHEP, 2002.
    [8] 姚红娟,李光瑞. 西安200 MeV质子装置环布局和注入引出系统初步设计[R]. 北京:清华大学,2015.
    [9] LEE I, MARTIN J, McGRORY J, et al. Proceeding of Particles Accelerator Conference[C]. Washington, D.C.: IEEE, 1987.
    [10] NODA F, EBINA F, NISHIUCHI H, et al. Proceeding of Particles Accelerator Conference[C]. Columbia: IEEE, 2009.
    [11] TEREBILO A. Accelerator toolbox for MATLAB[R]. Stanford, USA: SLAC, 2001.
    [12] GROTE H, SCHMIDT F, DENIAU L, et al. The MAD-X program[R]. Genoa, Switzerland: CERN, 2016.
    [13] HARDT W. Ultraslow extraction out of LEAR[R]. Genoa, Switzerland: CERN, 1981.
    [14] FURUKAWA T, NODAB K, MURAMATSU M, et al. Global spill control in RF-knockout slow-extraction[J]. Nuclear Instruments and Methods in Physics Research A, 2004, 522: 196-204.
计量
  • 文章访问数:  235
  • HTML全文浏览量:  0
  • PDF下载量:  1024
  • 被引次数: 0
出版历程
  • 刊出日期:  2016-10-19

目录

    /

    返回文章
    返回