低能氦等离子体低温条件下钨材料的表面形貌

贾玉振, 刘伟, T. W. Morgan

贾玉振, 刘伟, T. W. Morgan. 低能氦等离子体低温条件下钨材料的表面形貌[J]. 原子能科学技术, 2016, 50(11): 2027-2033. DOI: 10.7538/yzk.2016.50.11.2027
引用本文: 贾玉振, 刘伟, T. W. Morgan. 低能氦等离子体低温条件下钨材料的表面形貌[J]. 原子能科学技术, 2016, 50(11): 2027-2033. DOI: 10.7538/yzk.2016.50.11.2027
JIA Yu-zhen, LIU Wei, T. W. Morgan. Surface Morphology of W Surface Exposed to Low Energy He Plasma at Low Temperature[J]. Atomic Energy Science and Technology, 2016, 50(11): 2027-2033. DOI: 10.7538/yzk.2016.50.11.2027
Citation: JIA Yu-zhen, LIU Wei, T. W. Morgan. Surface Morphology of W Surface Exposed to Low Energy He Plasma at Low Temperature[J]. Atomic Energy Science and Technology, 2016, 50(11): 2027-2033. DOI: 10.7538/yzk.2016.50.11.2027

低能氦等离子体低温条件下钨材料的表面形貌

Surface Morphology of W Surface Exposed to Low Energy He Plasma at Low Temperature

  • 摘要: 为研究氦等离子体在钨表面造成的表面纳米结构,利用荷兰基础能源研究所Pilot-PSI直线等离子体发生装置在673 K温度下,对钨材料进行了低能(40 eV)高束流强度(4×1023 m-2•s-1)氦等离子体辐照。实验结果表明,辐照后钨材料表面出现了多种不同形态的纳米结构,表面纳米结构和晶粒的表面法向之间存在明显关联。在表面法向为[111]的晶粒表面出现三角形的纳米结构,在[110]取向的晶粒表面出现条带状的纳米结构,而在[001]取向的晶粒表面没有明显的结构出现。晶粒表面的纳米结构尺寸在50 nm左右,高度起伏在5 nm以下。另外,氦等离子体辐照会造成晶界处的高度差,在25 nm左右。分析推测氦等离子体辐照造成的晶粒表面和晶界的形貌可能是由近表面的气泡所导致的。

     

    Abstract: In order to investigate the surface nanostructures induced by helium plasma on tungsten surface, tungsten samples were exposed to low energy (40 eV) and high flux (4×1023 m-2•s-1) helium plasma at 673 K in Pilot-PSI linear plasma device of Dutch Institute for Fundamental Energy Research. Experimental results show that after exposure to helium plasma, surface nanostructures with different morphologies appear on tungsten surface, and the surface nanostructures show strong dependence on the surface normal direction. Triangular structures are observed on surfaces with [111] surface normal direction, and lamellar structures are observed on [110] surfaces, while no obvious structures are observed on [001] surfaces. The lateral sizes of nanostructures are about 50 nm, and the height of surface nanostructures is lower than 5 nm. In addition, fluctuations appear along the grain boundaries, and the height difference of which is about 25 nm. The surface morphology on tungsten surface is speculated to be due to the helium bubbles in the near surface region.

     

  • [1] ONGENA J, van OOST G. Energy for future centuries: Prospects for fusion power as a future energy source[J]. Fusion Science and Technology, 2010, 57(2): 3-15.
    [2] PIRONTI A, WALKER M. Fusion, Tokamaks and plasma control: An introduction and tutorial[J]. Control Systems, IEEE, 2005, 25(5): 30-43.
    [3] PINTSUK G. Tungsten as a plasma-facing material[C]∥KONINGS R J M. Comprehensive nuclear materials. Oxford: Elsevier Ltd.,2012: 551-581.
    [4] HIRAI T, ESCOURBIAC F, CARPENTIER-CHOUCHANA S. ITER full tungsten divertor qualification program and progress[J]. Physica Scripta, 2014, T159: 014006.
    [5] KAJITA S, SAKAGUCHI W, OHNO N, et al. Formation process of tungsten nanostructure by the exposure to helium plasma under fusion relevant plasma conditions[J]. Nuclear Fusion, 2009, 49: 095005.
    [6] BALDWIN M J, DOERNER R P. Formation of helium induced nanostructure ‘fuzz’ on various tungsten grades[J]. Journal of Nuclear Materials, 2010, 404: 165-173.
    [7] TOKUNAGA K, TAMURA S, YOSHIDA N, et al. Synergistic effects of high heat loading and helium irradiation of tungsten[J]. Journal of Nuclear Materials, 2004, 329-333: 757-760.
    [8] YE M Y, KANEHARA H, FUKUTA S, et al. Blister formation on tungsten surface under low energy and high flux hydrogen plasma irradiation in NAGDIS-I[J]. Journal of Nuclear Materials, 2003, 313-316: 72-76.
    [9] MIYAMOTO M, MIKAMI S, NAGASHIMA H, et al. Systematic investigation of the formation behavior of helium bubbles in tungsten[J]. Journal of Nuclear Materials, 2015, 463: 333-336.
    [10] de TEMMERMAN G, ZIELINSKI J J, van DIEPEN S, et al. ELM simulation experiments on Pilot-PSI using simultaneous high flux plasma and transient heat/particle source[J]. Nuclear Fusion, 2011, 51: 073008.
    [11] van der MEIDEN H J, AL R S, BARTH C J, et al. High sensitivity imaging Thomson scattering for low temperature plasma[J]. Review of Scientific Instruments, 2008, 79: 013505.
    [12] PARISH C M, HIJAZI H, MEYER H M, et al. Effcet of tungsten crystallographic orientation on He-ion-induced surface morphology changes[J]. Acta Materialia, 2014, 62: 173-181.
    [13] OHNO N, HIRAHATA Y, YAMAGIWA M, et al. Influence of crystal orientation on damages of tungsten exposed to helium plasma[J]. Journal of Nuclear Materials, 2013, 438: S879-S882.
    [14] YAMAGIWA M, KAJITA S, OHNO N, et al. Helium bubble formation on tungsten in dependence of fabrication method[J]. Journal of Nuclear Materials, 2011, 417: 499-503.
    [15] ECKSTEIN W. Sputtering yields[C]∥BEHRISCH R, ECKSTEIN W. Sputtering by particle bombardment. Berlin Heidelberg: Springer-Verlag GmbH., 2007: 33-189.
    [16] KAJITA S, NISHIJIMA D, OHNO N, et al. Reduction of laser power threshold for melting tungsten due to subsurface helium holes[J]. Journal of Applied Physics, 2006, 100: 103304.
计量
  • 文章访问数:  255
  • HTML全文浏览量:  0
  • PDF下载量:  1152
  • 被引次数: 0
出版历程
  • 刊出日期:  2016-11-19

目录

    /

    返回文章
    返回