精细乳房模型及其在乳腺X射线摄影剂量评估中的应用

王文静, 邱睿, 任丽, 李君利, 李春艳, 武祯

王文静, 邱睿, 任丽, 李君利, 李春艳, 武祯. 精细乳房模型及其在乳腺X射线摄影剂量评估中的应用[J]. 原子能科学技术, 2016, 50(11): 2085-2091. DOI: 10.7538/yzk.2016.50.11.2085
引用本文: 王文静, 邱睿, 任丽, 李君利, 李春艳, 武祯. 精细乳房模型及其在乳腺X射线摄影剂量评估中的应用[J]. 原子能科学技术, 2016, 50(11): 2085-2091. DOI: 10.7538/yzk.2016.50.11.2085
WANG Wen-jing, QIU Rui, REN Li, LI Jun-li, LI Chun-yan, WU Zhen. Detailed Breast Model and Its Application to Glandular Dose Estimation in Mammography[J]. Atomic Energy Science and Technology, 2016, 50(11): 2085-2091. DOI: 10.7538/yzk.2016.50.11.2085
Citation: WANG Wen-jing, QIU Rui, REN Li, LI Jun-li, LI Chun-yan, WU Zhen. Detailed Breast Model and Its Application to Glandular Dose Estimation in Mammography[J]. Atomic Energy Science and Technology, 2016, 50(11): 2085-2091. DOI: 10.7538/yzk.2016.50.11.2085

精细乳房模型及其在乳腺X射线摄影剂量评估中的应用

Detailed Breast Model and Its Application to Glandular Dose Estimation in Mammography

  • 摘要: 乳腺是对辐射致癌最敏感的组织之一,而辐射致癌风险与受照剂量密切相关。为更准确地评估电离辐射所致乳腺受照剂量,本文建立了一个具有皮肤、皮下脂肪、乳房后侧脂肪、悬吊韧带、纤维腺体区脂肪、输乳管、小叶、输乳窦和乳头等精细结构的乳房数学模型,并将其体素化为体素模型。考虑到在乳腺X射线摄影中的应用,对乳房体素模型进行头尾位(CC位)压迫,建立压迫乳房模型,并与中国成年女性参考人体素体模(CRAF)相拼接。采用Geant4对乳腺X射线摄影进行蒙特卡罗模拟,计算了一系列平均腺体剂量转换因子。根据计算结果,采用精细乳房模型计算的平均腺体剂量转换因子低于我国现行国家标准的取值,但与美国放射学会(ACR)标准的取值差别不大。

     

    Abstract: The female breast is one of the most radiosensitive organs, and mean glandular tissue (MGD) is regarded as the most reasonable dose descriptor related to the risk of radiation-induced breast cancer. To estimate the MGD more precisely, a mathematical model with detailed structures of breast was constructed, which includes skin, subcutaneous fat layer, retromammary fat layer, Cooper’s ligaments, intraglandular fats, ductal trees, lobules, lactiferous sinus, nipple and so on. The mathematical model was then voxelized to a voxel model. The voxel breast model was compressed in the cranio caudal direction for mammography. The compressed breast model was combined with the Chinese reference adult female voxel model (CRAF), and Monte Carlo simulation of mammography was performed based on it with Geant4. A series of glandular tissue dose conversion factors for mammography were calculated. The data calculated in this work are smaller than the data from specification for testing of quality control in mammography of China. However, the difference between the data calculated in this work and those from American College of Radiology (ACR) is small.

     

  • [1] OTTO S J, FRACHEBOUD J, LOOMAN C W, et al. Initiation of population based mammography screening in Dutch municipalities and effect on breast cancer mortality: A systematic review[J]. Lancet, 2003, 361: 1411-1417.
    [2] IAEA. Dosimetry in diagnostic radiology: An international code of practice, Technical Reports Series No. 457[R]. Vienna: IAEA, 2006.
    [3] EUREF. European guidelines for quality assurance in breast cancer screening and diagnosis[R]. The Netherlands: European Communities, 2003.
    [4] ACR. Mammography quality control manual[R]. America: American College of Radiology, 1999.
    [5] 中华人民共和国卫生部. GBZ 186—2007乳腺X射线摄影质量控制检测规范[S]. 北京:中华人民共和国卫生部,2007.
    [6] DANCE D R. Monte Carlo calculation of conversion factors for the estimation of mean glandular breast dose[J]. Phys Med Biol, 1990, 35: 1211-1219.
    [7] DANCE D R, SKINNER C L, YOUNG K C, et al. Additional factors for the estimation of mean glandular breast dose using the UK mammography dosimetry protocol[J]. Phys Med Biol, 2000, 45: 3225-3240.
    [8] DANCE D R, SKINNER C L, YOUNG K C, et al. Further factors for the estimation of mean glandular dose using the United Kingdom, European and IAEA breast dosimetry protocols[J]. Phys Med Biol, 2009, 54: 4361-4372.
    [9] DANCE D R, YOUNG K C. Estimation of mean glandular dose for contrast enhanced digital mammography: Factors for use with the UK, European and IAEA breast dosimetry protocols[J]. Phys Med Biol, 2014, 59: 2127-2137.
    [10] WU X, BARNES G T, TUCKER D M. Spectral dependence of glandular tissue dose in screen-film mammography[J]. Radiology, 1991, 179: 143-148.
    [11] WU X, GINGOLD E L, BARNES G T, et al. Normalized average glandular dose in molydenum target-rhodium filter and rhodium target-rhodium filter mammography[J]. Radiology, 1994, 193: 83-89.
    [12] HAMMERSTEIN G R, MILLER D W, WHITE D R, et al. Absorbed radiation dose in mammography[J]. Radiology, 1979, 130: 485-491.
    [13] 龚西騟,丁华野. 乳腺病理学[M]. 北京:人民卫生出版社,2009.
    [14] HUANG S Y, BOONE J M, YANG K, et al. The effect of skin thickness determined using breast CT on mammographic dosimetry[J]. Med Phys, 2008, 35(4): 1199-1206.
    [15] SHI L, VEDANTHAM S, KARELLAS A, et al. Technical Note: Skin thickness measurements using high-resolution flat-panel cone-beam dedicated breast CT[J]. Med Phys, 2013, 40(3): 031913.
    [16] RAMSAY D T, KENT J C, HARTMANN R A, et al. Anatomy of the lactating breast redefined with ultrasound imaging[J]. Journal of Anatomy, 2005, 206(6): 525-534.
    [17] MAHR D M. Three-dimensional, in-silico breast phantom for multimodality image simulations[D]. USA: University of Illinois at Urbana-Champaign, 2009.
    [18] RUSBY J E, BRACHTEL E F, MICHAELSON J S, et al. Breast duct anatomy in the human nipple: Three-dimensional patterns and clinical implications[J]. Breast Cancer Res Treat, 2007, 106(2): 171-179.
    [19] BAKIC P R, ALBERT M, BRZAKOVIC D, et al. Mammogram synthesis using a 3D simulation, 1: Breast tissue model and image acquisition simulation[J]. Med Phys, 2002, 29(9): 2131-2139.
    [20] WISKIN J, BORUP D T, JOHNSON S A, et al. Non-linear inverse scattering: High resolution quantitative breast tissue tomography[J]. J Acoust Soc, 2012, 131(5): 3802-3813.
    [21] ICRU. Photon, electron, proton and neutron interaction data for body tissues, ICRU Report 46[R]. 1992.
    [22] BOONE J M, FEWELL T R, JENNINGS R J. Molybdenum, rhodium and tungsten anode spectral models using interpolating polynomials with application to mammography[J]. Med Phys, 1997, 24: 1863-1874.
计量
  • 文章访问数:  236
  • HTML全文浏览量:  1
  • PDF下载量:  1501
  • 被引次数: 0
出版历程
  • 刊出日期:  2016-11-19

目录

    /

    返回文章
    返回