HARMONY程序计算中子扩散方程高阶λ本征值问题的基准验证

Benchmark Verification of HARMONY Code on Neutron Diffusion Equation High-order λ Eigenvalue Problem

  • 摘要: 高阶λ谐波在反应堆堆芯功率重构、换料优化、ADS次临界反应堆物理特性研究等领域有着重要应用价值。为进行高阶λ谐波的计算,本文基于隐式重启动Arnoldi方法(IRAM)编制了可用于一维、二维、三维笛卡尔坐标系中子扩散方程的任意阶λ谐波及本征值计算的HARMONY程序,并进行了基准题的数值验证。结果表明,HARMONY程序能实现高阶λ本征值问题计算,具有较高的精度,为未来基于λ谐波的ADS次临界反应堆物理特性研究奠定了基础。

     

    Abstract: High-order λ harmonics have valuable applications in the fields of core power re-construction, re-fueling optimization and neutron characteristics study of ADS sub-critical reactor. To calculate high-order λ harmonics, based on the implicitly restarted Arnoldi method (IRAM), the HARMONY code for arbitrary high-order λ eigenvalue and harmonics calculation in one, two and three Cartesian coordinates neutron diffusion equation was developed and verified by the benchmark problems. The results indicate that HARMONY code is capable for high-order λ eigenvalue calculation and has good numerical accuracy. It can be applied in future for λ harmonics based neutron characteristics study of ADS sub-critical reactor.

     

/

返回文章
返回