LOCA下具有表面裂纹的反应堆压力容器承压热冲击分析

陆维, 何铮

陆维, 何铮. LOCA下具有表面裂纹的反应堆压力容器承压热冲击分析[J]. 原子能科学技术, 2017, 51(8): 1407-1412. DOI: 10.7538/yzk.2017.51.08.1407
引用本文: 陆维, 何铮. LOCA下具有表面裂纹的反应堆压力容器承压热冲击分析[J]. 原子能科学技术, 2017, 51(8): 1407-1412. DOI: 10.7538/yzk.2017.51.08.1407
LU Wei, HE Zheng. PTS Analysis of RPV Structure with Surface Crack under LOCA[J]. Atomic Energy Science and Technology, 2017, 51(8): 1407-1412. DOI: 10.7538/yzk.2017.51.08.1407
Citation: LU Wei, HE Zheng. PTS Analysis of RPV Structure with Surface Crack under LOCA[J]. Atomic Energy Science and Technology, 2017, 51(8): 1407-1412. DOI: 10.7538/yzk.2017.51.08.1407

LOCA下具有表面裂纹的反应堆压力容器承压热冲击分析

PTS Analysis of RPV Structure with Surface Crack under LOCA

  • 摘要: 失水事故(LOCA)瞬态下,具有半椭圆形表面裂纹的反应堆压力容器(RPV)承压热冲击(PTS)问题被研究。采用有限元方法计算瞬态过程的热-应力响应;采用影响函数法计算应力强度因子,分别对母材和堆焊层内的应力进行分解,从而解决了由于堆焊层存在造成的应力拟合困难带来的计算偏差。编制了相应的断裂分析程序,对LOCA下RPV的结构完整性进行了分析。结果表明,在研究的LOCA下,整个瞬态过程中RPV应力强度因子均未超过材料断裂韧性,压力容器结构安全。本文研究为RPV在PTS下的结构完整性评估提供理论指导。

     

    Abstract: The pressurized thermal shock (PTS) analysis of a reactor pressure vessel (RPV) with a semi-elliptical surface crack was performed under loss of coolant accident (LOCA) transient. The finite element method (FEM) was adopted to calculate the thermal-stress responses. Stress-intensity factor (SIF) was calculated by influence function method. Stress distributions in the base material and bead welding layer were decomposed, so that the difficulty of stress fitting caused by existence of bead welding layer was conquered. A fracture analysis program was developed in present research to analyze the RPV integrity under LOCA. The results show that during the whole LOCA transient, SIF of RPV crack does not exceed fracture toughness, which means RPV structure is safe. The present research will provide a theoretical guidance for RPV integrity assessment under PTS.

     

  • [1] 孙海涛. 压水堆核电厂反应堆压力容器辐照脆化评价与监督[J]. 核安全,2010,1(3):17-21.SUN Haitao. Surveillance and irradiation assessment of reactor pressure vessel materials of LWR[J]. Nuclear Safety, 2010, 1(3): 17-21(in Chinese).
    [2] QIAN Guian, NIFFENEGGER M. Procedures methods and computer codes for probabilistic assessment of reactor pressure vessels subjected to pressurized thermal shocks[J]. Nuclear Engineering and Design, 2013, 258: 35-50.
    [3] 濮继龙. 美国核反应堆压力容器热冲击分析概况[J]. 核动力工程,1984,5(2):28-35.PU Jilong. Progress of RPV pressurized thermal shock research in USA[J]. Nuclear Power Engineering, 1984, 5(2): 28-35(in Chinese).
    [4] 贺寅彪,曲家棣,窦一康. 反应堆压力容器承压热冲击分析[J]. 压力容器,2004,21(10):5-9.HE Yinbiao, QU Jiadi, DOU Yikang. Pressurized thermal shock analysis for reactor pressure vessel[J]. Pressure Vessel Technology, 2004, 21(10): 5-9(in Chinese).
    [5] ASME. Boiler and pressure vessel code: Section Ⅺ: Rules for in-service inspection of nuclear power plant components[R]. New York: ASME, 2007.
    [6] RSEM: Inspection rules for mechanical components of PWR nuclear island[M]. 2nd edition. Paris: AFCEN, 1997.
    [7] Regulatory guide 1.154Format and content of plant-specific pressurized thermal shock safety analysis reports for pressurized water reactor[S]. US: NRC, 1987.
    [8] U.S. code of federal regulations: Title 10: Part 50: Section 50.61: Fracture toughness requirements for protection against pressurized thermal shock[R]. US: [s. n.], 1992.
    [9] KEENEY J A, BRYSON J W. Stress-intensity-factor influence coefficients for semielliptical inner-surface flaws in clad pressure vessels[R]. USA: ASTM, 1995.
    [10] NRC. Regulatory guide: No. 1.99: Revision 2: Radiation embrittlement of reactor vessel materials[R]. US: NRC, 1988.
    [11] CHEN Mingya, LU Feng, WANG Rongshan, et al. The deterministic structural integrity assessment of reactor pressure vessels under pressurized thermal shock loading[J]. Nuclear Engineering and Design, 2015, 288: 130-140.
计量
  • 文章访问数:  228
  • HTML全文浏览量:  0
  • PDF下载量:  1098
  • 被引次数: 0
出版历程
  • 刊出日期:  2017-08-19

目录

    /

    返回文章
    返回