中子吸收材料Fe-TbFeO3-DyFeO3的制备及性能研究
Preparation and Properties Investigation of Neutron Absorber Material Fe-TbFeO3-DyFeO3
-
摘要: 采用粉末冶金工艺制备了Fe-TbFeO3-DyFeO3块体材料。利用X射线衍射仪、扫描电子显微镜和透射电子显微镜对球磨粉末和烧结块体进行了微观组织分析,测试了块体材料的热物理性能、耐腐蚀性能和离子辐照性能。实验结果表明,通过球磨可获得混合均匀的Fe-Tb4O7-Dy2O3纳米尺寸颗粒的混合粉末。高温下Tb4O7转变成Tb2O3,烧结块体中的Tb2O3和Dy2O3的含量随烧结温度升高而降低,在1200 ℃烧结24 h可获得Fe-TbFeO3-DyFeO3块体材料。Fe-TbFeO3-DyFeO3块体材料具有高的热导率和低的热膨胀系数,腐蚀性能较差。在400~600 ℃辐照至25 dpa,随辐照温度升高辐照肿胀率逐渐降低,400℃辐照肿胀率最大为0.5%。Abstract: Fe-TbFeO3-DyFeO3 was prepared by powder metallurgy technology. The microstructures of ball milled powder mixtures and sintered bulks were analyzed by X-ray diffraction, scanning electron microscope and transmission electron microscope. Thermophysical properties, corrosion resistance and ion irradiation properties of the sintered Fe-TbFeO3-DyFeO3 bulks were measured and analyzed. The experiment results show that the homogeneous nanocrystalline Fe-Tb4O7-Dy2O3 powder mixtures are obtained by ball milling. Tb4O7 transforms to Tb2O3 at high temperature. Contents of Tb2O3 and Dy2O3 decrease with temperature increase during sintering process, andFe-TbFeO3-DyFeO3 bulks are obtained after sintering at 1200 ℃ for 24 h. The bulks have high thermal conductivity, low thermal expansion coefficient and poor corrosion resistance performance. The sintered bulks are irradiated at 400-600 ℃ for 25 dpa. It is found that the irradiation swelling rate decreases with temperature increase, and the maximum swelling rate is 0.5% at 400℃.
-
-
[1] ONOUE M, KAWANISHI T, CARLSON W R, et al. Application of MSHIM core control strategy for Westinghouse AP1000 nuclear power plant[C]∥GENES4/ANP2003. [S. l.]: [s. n.], 2003: 15-18. [2] FETTERMAN R J. Advanced first core design for the Westinghouse AP1000[C]∥17th International Conference on Nuclear Engineering. USA: American Society of Mechanical Engineers, 2009: 167-174. [3] DRUDY K J, CARLSON W R, CONNOR M E,等. 先进灰棒控制组件:中国,200810178126.2[P]. 2008-11-19. [4] 卢俊强,汤春桃,黎辉,等. 一种先进的灰控制棒及吸收体:中国,103374678A[P]. 2012-04-27. [5] BOURGOIN J, COUVREUR F, GOSSET D, et al. The behaviour of control rod absorber under irradiation[J]. Journal of Nuclear Materials, 1999, 275(3): 296-304. [6] 杨文斗. 反应堆材料学[M]. 北京:原子能出版社,2001. [7] RISOVANY V D, VARLASHOVA E E, SUSLOV D N. Dysprosium titanate as an absorber material for control rods[J]. Journal of Nuclear Materials, 2000, 281: 84-89. [8] HUANG J, RAN G, LIU T, et al. Microstructure and physical properties of Tb2TiO5 neutron absorber synthesized by ball milling and sintering[J]. Journal of Materials Engineering and Performance, 2016, 25(10): 4266-4273. [9] LITTLE E A, STOW D A. Void-swelling in irons and ferritic steels, Ⅱ: An experimental survey of materials irradiated in a fast reactor[J]. Journal of Nuclear Materials, 1979, 87(1): 25-39. [10] KONOBEEVA YU V, DVORIASHINA A M, POROLLOA S I, et al. Swelling and microstructure of pure Fe and Fe-Cr alloys after neutron irradiation to ~26 dpa at 400 ℃[J]. Journal of Nuclear Materials, 2006, 355: 124-130. [11] BUDYLKIN N I, MIRONOVA E G, CHERNOV V M. Neutron-induced swelling and embrittlement of pure iron and pure nickel irradiated in the BN-350 and BOR-60 fast reactors[J]. Journal of Nuclear Materials, 2008, 375(3): 359-364. [12] BAUM E M, ERNESTI M C, KNOX H D, et al. Nuclides and isotopes[M]. 7th ed. [S. l.]: Knolls Atomic Power Laboratory, 2009: 66-67. [13] 杨伟焱,毕光文,杨波,等. 低价值控制棒中子吸收体材料燃耗相关数据的制作及验证研究[J]. 核科学与工程,2014,34(3):369-376. YANG Weiyan, BI Guangwen, YANG Bo, et al. Study on production and validation of low worth control rod material burnup calculation parameters[J]. Nuclear Science and Engineering, 2014, 34(3): 369-376(in Chinese). [14] American Society for Metals, DAVIS J R. ASM handbook: Properties and selection: Nonferrous alloys and special-purpose materials[M]. US: ASM International, 2009. [15] WANG X, MONTERROSA A M, ZHANG F, et al. Void swelling in high dose ion-irradiated reduced activation ferritic-martensitic steels[J]. Journal of Nuclear Materials, 2015, 462: 119-125. [16] 谢光善,张汝娴. 快中子堆燃料元件[M]. 北京:化学工业出版社,2007.
计量
- 文章访问数:
- HTML全文浏览量: 0
- PDF下载量: