蒸汽发生器水位改进分数阶控制器研究

郭丹, 夏虹

郭丹, 夏虹. 蒸汽发生器水位改进分数阶控制器研究[J]. 原子能科学技术, 2018, 52(7): 1268-1275. DOI: 10.7538/yzk.2017.youxian.0660
引用本文: 郭丹, 夏虹. 蒸汽发生器水位改进分数阶控制器研究[J]. 原子能科学技术, 2018, 52(7): 1268-1275. DOI: 10.7538/yzk.2017.youxian.0660
GUO Dan, XIA Hong. Study on Improved Fractional Order Controller of Steam Generator Water Level[J]. Atomic Energy Science and Technology, 2018, 52(7): 1268-1275. DOI: 10.7538/yzk.2017.youxian.0660
Citation: GUO Dan, XIA Hong. Study on Improved Fractional Order Controller of Steam Generator Water Level[J]. Atomic Energy Science and Technology, 2018, 52(7): 1268-1275. DOI: 10.7538/yzk.2017.youxian.0660

蒸汽发生器水位改进分数阶控制器研究

Study on Improved Fractional Order Controller of Steam Generator Water Level

  • 摘要: 蒸汽发生器在瞬态扰动时存在严重的虚假水位现象,增加了低功率水位控制的难度。为研究蒸汽发生器低功率水位控制问题,利用线性参数变化理论,建立了时变的多胞线性参数变化模型。在此模型基础上,提出了分数阶控制器。依据分数阶微积分理论,设计了串级分数阶PIλDμ控制器。根据Oustaloup间接离散化方法实现了分数阶PIλDμ控制并对Oustaloup方法进行了改进。研究了在负荷变化时,内环和外环4个阶次参数以及改进算法后2个参数变化对系统控制性能的影响。在不同功率区间,相同负荷变化的情况下,对改进后的串级分数阶PIλDμ控制器进行了仿真实验。结果表明,所设计的改进串级分数阶PIλDμ控制器能有效抑制干扰,分数阶微积分算子的阶次以及改进的Oustaloup方法引入的系数对控制效果均有一定影响,合理调节参数能明显改善系统的控制性能。

     

    Abstract: The steam generator exists the serious false water level phenomenon in a transient disturbance. The difficulty of controlling water level in the low power increases. In order to study the low power water level control problem of steam generator, a time-varying linear parameter change model was established by using linear parameter change theory. A fractional order controller for the steam generator model was proposed based on this model. According to fractional calculus theory, fractional order PIλDμ was adopted. Oustaloup indirect discretization method was used to realize the fractional order PIλDμ control and the Oustaloup method was improved. The influence of four order parameters of inner-loop and outer-loop and two parameters of the improved method varying on system control performance was studied when the load changed. In different power intervals, the simulation experiments of the improved cascade fractional PIλDμ controller were carried out in the case of the same load change. The analysis result shows that the designed improved cascade fractional PIλDμ controller can resist interference effectively. The four order parameters of inner-loop and outer-loop and two parameters of the improved method varying influence control effect to a certain degree. Adjusting the parameters reasonable can improve the transient characteristics of the system obviously.

     

  • [1] 李凤宇,陆古兵,张龙飞,等. 蒸汽发生器水位双PI控制的改进研究[J]. 原子能科学技术,2010,44(增刊): 279-282.LI Fengyu, LU Gubing, ZHANG Longfei, et al. Improved double PI control for nuclear steam generator water level[J]. Atomic Energy Science and Technology, 2010, 44(Suppl.): 279-282(in Chinese).
    [2] WU J, NGUANG S K, SHEN J, et al. Robust H tracking control of boiler-turbine systems[J]. ISA Transactions, 2010, 49(3): 369-375.
    [3] WEI L, FANG F. H-based LQR water level control for nuclear U-tube steam generators[C]∥Chinese Control and Decision Conference (CCDC). USA: IEEE, 2013: 4076-4080.
    [4] KOTHARE M V, METTLER B, MORARI M, et al. Linear parameter varying model predictive control for steam generator level control[J]. Computers & Chemical Engineering, 1997, 21: S861-S866.
    [5] 滕树杰,张乃尧,崔震华. 压水堆蒸汽发生器水位的分层自适应模糊控制[J]. 核动力工程,2003,24(3):281-284.TENG Shujie, ZHANG Naiyao, CUI Zhenhua. Hierarchical automatism adaptive fuzzy control of SG level of nuclear power plants in PWR[J]. Nuclear Power Engineering, 2003, 24(3): 281-284(in Chinese).
    [6] 周洪煜,汪正海,黄建平,等. 蒸汽发生器水位 SDRNN 优化自抗扰控制[J]. 动力工程学报,2013,33(10):789-794.ZHOU Hongyu, WANG Zhenghai, HUANG Jianping, et al. Steam generator water level control based on SDRNN-ADRC optimization[J]. Journal of Chinese Society of Power Engineering, 2013, 33(10): 789-794(in Chinese).
    [7] PODLUBNY I, DORCAK L, KOSTIAL I. On fractional derivatives, fractional-order dynamic systems and PIλDμ controllers[C]∥Proceedings of the 36th Conference Decision and Control. [S. l.]: [s. n.], 1997: 4985-4990.
    [8] POMMIER-BUDINGER V, JANAT Y, NELSON-GRUEL D, et al. CRONE control of a multivariable lightly damped plant[C]∥The 14th IEEE Mediterranean Electro-technical Conference. USA: IEEE, 2008: 54-60.
    [9] IRVING E, MIOSSEC C, TASSART J. Towards efficient full automatic operation of the PWR steam generator with water level adaptive control[C]∥Proceedings of 2nd International Conference on Boiler Dynamics and Control in Nuclear Power Stations. London: British Nuclear Energy Society, 1980: 309-329.
    [10] CARLSON G, HALIJAK C. Approximation of fractional capacitors (1/s)1/n by a regular Newton process[J]. IEEE Transactions on Circuit Theory, 1964, 11(2): 210-213.
    [11] OUSTALOUP A, COIFFET P. Systèmes asservis linéaires d’ordre fractionnaire: Théorie et pratique: Par Alain Oustaloup[M]. Paris: [s. n.], 1983.
    [12] XUE D, ZHAO C, CHEN Y Q. Fractional order PID control of a DC-motor with elastic shaft: A case study[C]∥Proceedings of American Control Conference. USA: IEEE, 2006: 3182-3187.
    [13] 薛定宇,陈阳泉. 控制数学问题的 MATLAB 求解[M]. 北京:清华大学出版社,2007.
    [14] AHN H S, BHAMBHANI V, CHEN Y Q. Fractional-order integral and derivative controller design for temperature profile control[C]∥Chinese Control and Decision Conference. USA: IEEE, 2008: 4766-4771.
    [15] 曹军义,曹秉刚. 分数阶控制器的数字实现及其特性[J]. 控制理论与应用,2006,23(5):791-794.CAO Junyi, CAO Binggang. Digital realization and characteristics of fractional order controllers[J]. Control Theory and Applications, 2006, 23(5): 791-794(in Chinese).
计量
  • 文章访问数:  133
  • HTML全文浏览量:  0
  • PDF下载量:  1128
  • 被引次数: 0
出版历程
  • 刊出日期:  2018-07-19

目录

    /

    返回文章
    返回