Si原子在CeO2(111)表面吸附与迁移的第一性原理研究

贾慧灵, 任保根, 刘学杰, 贾延琨, 李梅, 吴锦绣

贾慧灵, 任保根, 刘学杰, 贾延琨, 李梅, 吴锦绣. Si原子在CeO2(111)表面吸附与迁移的第一性原理研究[J]. 原子能科学技术, 2018, 52(7): 1214-1221. DOI: 10.7538/yzk.2017.youxian.0693
引用本文: 贾慧灵, 任保根, 刘学杰, 贾延琨, 李梅, 吴锦绣. Si原子在CeO2(111)表面吸附与迁移的第一性原理研究[J]. 原子能科学技术, 2018, 52(7): 1214-1221. DOI: 10.7538/yzk.2017.youxian.0693
JIA Huiling, REN Baogen, LIU Xuejie, JIA Yankun, LI Mei, WU Jinxiu. First Principle Calculation on Adsorption and Diffusion Behavior of Si Atom on CeO2(111) Surface[J]. Atomic Energy Science and Technology, 2018, 52(7): 1214-1221. DOI: 10.7538/yzk.2017.youxian.0693
Citation: JIA Huiling, REN Baogen, LIU Xuejie, JIA Yankun, LI Mei, WU Jinxiu. First Principle Calculation on Adsorption and Diffusion Behavior of Si Atom on CeO2(111) Surface[J]. Atomic Energy Science and Technology, 2018, 52(7): 1214-1221. DOI: 10.7538/yzk.2017.youxian.0693

Si原子在CeO2(111)表面吸附与迁移的第一性原理研究

First Principle Calculation on Adsorption and Diffusion Behavior of Si Atom on CeO2(111) Surface

  • 摘要: 为探究Si原子在CeO2(111)表面吸附的微观行为,采用第一性原理的方法研究了Si原子在CeO2(111)表面的吸附作用、电子结构和迁移过程,计算了Si原子在CeO2(111)表面的吸附能,最稳定及次稳定吸附位置的电子态密度与电荷密度分布、迁移激活能。计算结果表明:Si原子最易吸附于基底表层的O原子上,其中O桥位(Obri)吸附作用最强,O顶位(Ot)和O三度位(Oh)吸附强度次之。Si原子仅对其最邻近的表层O原子结构影响较大,这与Si原子及其最邻近的O原子间电荷密度重叠程度增强的结果一致。Si原子最易围绕着Ot位从Obri位向Oh位迁移,迁移所需激活能为0.849 eV。

     

    Abstract: In order to research the microscopic behavior of Si atom adsorbed on CeO2(111) surface, the adsorption, electronic structure and diffusion behavior of Si atom on CeO2(111) surface were studied using the first principle method. The adsorption energy was calculated. The electron states density, charge density distribution, diffusion activation energy of the most and sub-stable adsorption sites of Si atom on the CeO2(111) surface were also calculated. The results show that Si atom is most easily adsorbed on the surface layer of O atoms, in which the O bridge site (Obri) has the strongest adsorption, and the adsorption strength at the O top site (Ot) and the O three-fold site (Oh) is second. Si atom only has a great influence on the structure of the nearest surface of O atoms, which is consistent with the increase of the charge density overlap between the Si atom and its nearest neighbor O atoms. The Si atom most easily diffuses from the Obri site to Oh site while around the Ot site, and the required activation energy for diffusion is 0.849 eV.

     

  • [1] LIU H J, FENG Z Y, HUANG X W, et al. Study on purification and application of novel precipitant for ceria-based polishing powder[J]. Journal of Rare Earths, 2013, 31(2): 174-179.
    [2] WANG L, ZHANG K, SONG Z, et al. Ceria concentration effect on chemical mechanical polishing of optical glass[J]. Applied Surface Science, 2007, 253(11): 4951-4954.
    [3] HOSHINO T, KURATA Y, TERASAKI Y, et al. Mechanism of polishing of SiO2 films by CeO2 particles[J]. Journal of Non-Crystalline Solids, 2001, 283(1): 129-136.
    [4] LEE S H, LU Z, BABU S V, et al. Chemical mechanical polishing of thermal oxide films using silica particles coated with ceria[J]. Journal of Materials Research, 2002, 17(10): 2744-2749.
    [5] SUN Y X, ZHANG L X, WANG Y B, et al. Hollow and hollow core/shell CeO2/SiO2@CeO2 spheres: Synthesis, structure evolution and catalytic properties[J]. Journal of Alloys & Compounds, 2014, 586(5): 441-447.
    [6] 柴明霞,胡建东,冯晓平,等. SiO2-CeO2复合氧化物的制备及抛光性能[J]. 无机化学学报,2007,23(4):623-629.CHAI Mingxia, HU Jiandong, FENG Xiaoping, et al. Preparation and polishing properties of SiO2-CeO2 mixed oxides[J]. Chinese Journal of Inorganic Chemistry, 2007, 23(4): 623-629(in Chinese).
    [7] LEI H, CHU F L, XIAO B Q, et al. Preparation of silica/ceria nano composite abrasive and its CMP behavior on hard disk substrate[J]. Microelectronic Engineering, 2010, 87(9): 1747-1750.
    [8] 白林山,熊伟,储向峰,等. SiO2/CeO2复合磨粒的制备及在蓝宝石晶片抛光中的应用[J]. 光学精密工程,2014,22(5):1289-1295.BAI Linshan, XIONG Wei, CHU Xiangfeng, et al. Preparation of SiO2/CeO2 composite particles and their applications to CMP on sapphire substrates[J]. Optics and Precision Engineering, 2014, 22(5): 1289-1295(in Chinese).
    [9] 王永钊,赵永祥,刘滇生. CeO2-SiO2复合氧化物的制备表征及其负载Pd催化活性的研究[J]. 中国稀土学报,2003,21(2):52-54.WANG Yongzhao, ZHAO Yongxiang, LIU Dian sheng. Preparation, characterization and study of supported Pd catalytic activity of CeO2-SiO2 composite oxides[J]. Journal of Chinese Society for Rare Earth Sciences, 2003, 21(2): 52-54(in Chinese).
    [10] SHEN D H, JI L T, FU L L, et al. Immobilization of metalloporphyrins on CeO2@SiO2 with a core-shell structure prepared via microemulsion method for catalytic oxidation of ethylbenzene[J]. Journal of Central South University, 2015, 22(3): 862-867.
    [11] SON J H, KIM S W, BAE D S, et al. Synthesis and characterization of CeO2 doped SiO2 nanoparticles by a reverse micelle and so-gel processing[J]. Materials Science & Engineering A, 2008, 498(1): 2-4.
    [12] SONG X L, JIANG N, LI Y K, et al. Synthesis of CeO2 coated SiO2 nanoparticle and dispersion stability of its suspension[J]. Materials Chemistry & Physics, 2008, 110(1): 128-135.
    [13] ZHAO X B, LONG R W, CHEN Y, et al. Synthesis, characterization of CeO2@SiO2 nanoparticles and their oxide CMP behavior[J]. Microelectronic Engineering, 2010, 87(9): 1716-1720.
    [14] GUO X, LI Y Y, SHEN D H, et al. Immobilization of cobalt porphyrin on CeO2@SiO2 core-shell nanoparticles as a novel catalyst for selective oxidation of diphenylmethane[J]. Journal of Molecular Catalysis A, 2013, 367(2): 7-11.
    [15] 慕利娟,张忠义,张立业,等. CeO2-SiO2复合氧化物的制备及性能表征[J]. 稀土,2013,34(2):12-16.MU Lijuan, ZHANG Zhongyi, ZHANG Liye, et al. Preparation and characterization of CeO2-SiO2 composite oxides[J]. Rare Earth, 2013, 34(2): 12-16(in Chinese).
    [16] GRASSET F, MARCHAND R, MARIE A M, et al. Synthesis of CeO2@SiO2 core-shell nanoparticles by water-in-oil microemulsion preparation of functional thin film[J]. J Colloid Interface Sci, 2006, 299(2): 726-732.
    [17] KRESSE G, HAFNER J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium[J]. Physical Review B, 1994, 49(20): 14251-14269.
    [18] KRESSE G, FURTHMÜLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review B, 1996, 54(16): 11169-11186.
    [19] NOLAN M, GRIGOLEIT S, SAYLE D C, et al. Density functional theory studies of the structure and electronic structure of pure and defective low index surfaces of ceria[J]. Surface Science, 2005, 576(1): 217-229.
    [20] NOLAN M, PARKER S C, WATSON G W. The electronic structure of oxygen vacancy defects at the low index surfaces of ceria[J]. Surface Science, 2005, 595(1): 223-232.
    [21] YANG Z X, WEI Y W, FU Z M, et al. Facilitated vacancy formation at Zr-doped ceria(111) surfaces[J]. Surface Science, 2008, 602(6): 1199-1206.
    [22] YANG Z X, LU Z S, LUO G X, et al. Oxygen vacancy formation energy at the Pd/CeO2(111) interface[J]. Physics Letters A, 2007, 369(1): 132-139.
    [23] LU Z S, YANG Z X, HE B L, et al. Cu-doped ceria: Oxygen vacancy formation made easy[J]. Chemical Physics Letters, 2011, 510(1): 60-66.
    [24] YANG Z, WANG Q, WEI S. The effect of Zr-doping on the interaction of water molecules with the ceria(111) surface[J]. Surface Science, 2011, 605(3): 351-360.
    [25] GERWARD L, OLSEN J S, PETIT L, et al. Bulk modulus of CeO2 and PrO2: An experimental and theoretical study[J]. Journal of Alloys & Compounds, 2005, 400(1): 56-61.
    [26] HISASHIGE T, YAMAMURA Y, TSUJI T. Thermal expansion and Debye temperature of rare earth-doped ceria[J]. Journal of Alloys & Compounds, 2006, 408-412(2): 1153-1156.
    [27] SAMESHIMA S, ONO H, HIGASHI K, et al. Microstructure of rare-earth-doped ceria prepared by oxalate coprecipitation method[J]. Journal of the Ceramic Society of Japan, 2000, 108: 985-988.
    [28] YANG Z X, WOO T K, BAUDIN M, et al. Atomic and electronic structure of unreduced and reduced CeO2 surfaces: A first-principles study[J]. Journal of Chemical Physics, 2004, 120(16): 7741-7751.
    [29] 路战胜,楚兴丽,杨宗献. Rh在CeO2(111)表面吸附的第一性原理研究[J]. 原子与分子物理学报,2010,27(3):581-587.LU Zhansheng, CHU Xingli, YANG Zongxian. First principles studies of the Rh/CeO2(111) interface[J]. Journal of Atomic and Molecular Physics, 2010, 27(3): 581-587(in Chinese).
    [30] SHI S Q, TANG Y H, OUYANG C Y, et al. O-vacancy and surface on CeO2: A first-principles study[J]. Journal of Physics & Chemistry of Solids, 2010, 71(5): 788-796.
    [31] NOLAN M, FEARON J E, WATSON G W. Oxygen vacancy formation and migration in ceria[J]. Solid State Ionics, 2006, 177: 3069-3074.
    [32] 基泰尔C. 固体物理导论[M]. 项金钟,吴兴惠,译. 北京:化学工业出版社,2014.
    [33] 路战胜,罗改霞,杨宗献. Pd与CeO2(111)面的相互作用的第一性原理研究[J]. 物理学报,2007,56(9):5382-5388.LU Zhansheng, LUO Gaixia, YANG Zongxian. First principles studies of the Pd/CeO2(111) interface[J]. Acta Physica Sinica, 2007, 56(9): 5382-5388(in Chinese).
    [34] WUILLOUD E, DELLEY B, SCHNEIDER W D, et al. Spectroscopic evidence for localized and extended F-symmetry states in CeO2[J]. Physical Review Letters, 1984, 53(2): 202-205.
    [35] 王清高,杨宗献,危书义. 水分子和二氧化铈(111)表面相互作用的DFT+U研究[J]. 物理化学学报,2009,25(12):2513-2518.WANG Qinggao, YANG Zongxian, WEI Shuyi. DFT+U study on the interaction of water molecule and ceria(111) surface[J]. Acta Physica Sinica, 2009, 25(12): 2513-2518(in Chinese).
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 刊出日期:  2018-07-19

目录

    /

    返回文章
    返回