基于FPGA与GPS的时间测量电路设计与实现

尹俊, 倪发福, 张建川, 李运杰, 郑洋德, 白晓, 张亚鹏, 张鹏鸣, 王彦瑜

尹俊, 倪发福, 张建川, 李运杰, 郑洋德, 白晓, 张亚鹏, 张鹏鸣, 王彦瑜. 基于FPGA与GPS的时间测量电路设计与实现[J]. 原子能科学技术, 2019, 53(1): 151-157. DOI: 10.7538/yzk.2018.youxian.0229
引用本文: 尹俊, 倪发福, 张建川, 李运杰, 郑洋德, 白晓, 张亚鹏, 张鹏鸣, 王彦瑜. 基于FPGA与GPS的时间测量电路设计与实现[J]. 原子能科学技术, 2019, 53(1): 151-157. DOI: 10.7538/yzk.2018.youxian.0229
YIN Jun, NI Fafu, ZHANG Jianchuan, LI Yunjie, ZHENG Yangde, BAI Xiao, ZHANG Yapeng, ZHANG Pengming, WANG Yanyu. Design and Realization of Time Measurement Based on FPGA and GPS[J]. Atomic Energy Science and Technology, 2019, 53(1): 151-157. DOI: 10.7538/yzk.2018.youxian.0229
Citation: YIN Jun, NI Fafu, ZHANG Jianchuan, LI Yunjie, ZHENG Yangde, BAI Xiao, ZHANG Yapeng, ZHANG Pengming, WANG Yanyu. Design and Realization of Time Measurement Based on FPGA and GPS[J]. Atomic Energy Science and Technology, 2019, 53(1): 151-157. DOI: 10.7538/yzk.2018.youxian.0229

基于FPGA与GPS的时间测量电路设计与实现

Design and Realization of Time Measurement Based on FPGA and GPS

  • 摘要: 为宇宙射线缪子(μ子)测量实验设计了基于FPGA的高精度时间-数字转换器(TDC),结合TDC测量值与GPS提供的标准时间(UTC)精确记录了粒子事件的时间信息。TDC采用粗计数+细时间测量相结合的方式,用计数器实现动态范围大于1 s的粗时间测量;使用FPGA加法进位延时链构建时间内插完成了细时间测量,并借助Wave-Union与bin-by-bin方法提高时间分辨并改善非线性。实验室测试双边沿TDC的时间分辨为16.68 ps,时间测量精度(RMS)好于45 ps。测量结果表明,该TDC满足脉冲前沿时间甄别要求。

     

    Abstract: A time-to-digital convertor (TDC) based on field programmable gate array (FPGA) was designed for the cosmic ray μ measurement experiment. The high-precision time provided by TDC and a coordinated universal time (UTC) timestamp from GPS were used to make an accurate record of particle event. The method combining a coarse counter with a dynamic range larger than 1 s and a fine time interpolation based on FPGA carry-in delay chain was adopted in the TDC. The Wave-Union method and bin-by-bin method were used to improve the time resolution and linearity. The measurement results show that the time resolution of a double-edge TDC is 16.68 ps, the time measurement accuracy (RMS) is better than 45 ps, and TDC is sufficient for the pulse leading edge time discrimination.

     

  • [1] 王荣,韩成栋,张亚鹏,等. 小型宇宙射线探测仪的模拟和测量[J]. 原子核物理评论,2016,33(3):315-320. WANG Rong, HAN Chengdong, ZHANG Yapeng, et al. Simulation and measurement of a small cosmic ray device[J]. Nuclear Physics Review, 2016, 33(3): 315-320(in Chinese).
    [2] 冯存峰,张学尧,王永刚,等. 利用宇宙线大气簇射的时空特征分辨原初γ射线[J]. 高能物理与核物理,2003,27(11):969-972.FENG Cuifeng, ZHANG Xueyao, WANG Yonggang, et al. Identification of primary gamma-rays by the characteristics of time-space structure of the cosmic-ray air showers[J]. High Energy Physics and Nuclear Physics, 2003, 27(11): 969-972(in Chinese).
    [3] 霍文驹,梁昊. 一种新的宇宙线μ子寿命测量实验电子学系统设计[J]. 核电子学与探测技术,2016,36(5):461-465.HUO Wenju, LIANG Hao. A new electronic system design for the measurements of cosmic-ray Muon lifetime[J]. Nuclear Electronics & Detection Technology, 2016, 36(5): 461-465(in Chinese).
    [4] 魏煜秦,孔洁,杨海波,等. 基于FPGA的时间间隔测量设计与实现[J]. 原子能科学技术,2017,51(10):1893-1897.WEI Yuqin, KONG Jie, YANG Haibo, et al. Design and realization of high precision time interval measurement based on FPGA[J]. Atomic Energy Science and Technology, 2017, 51(10): 1893-1897(in Chinese).
    [5] 张骥,曾云,王铮,等. 基于FPGA的高精度时间测量电路的实现[J]. 核电子学与探测技术,2011,31(5):508-512.ZHANG Ji, ZENG Yu, WANG Zheng, et al. The implementing of high resolution time measuring circuit based on FPGA[J]. Nuclear Electronics & Detection Technology, 2011, 31(5): 508-512(in Chinese).
    [6] 祁迹,邓智,刘以农. 一种基于FPGA的高精度单周期TDC设计[J]. 核电子学与探测技术,2011,31(4):378-381.QI Ji, DENG Zhi, LIU Yinong. A design of high resolution one-clock-cycle TDC based on FPGA[J]. Nuclear Electronics & Detection Technology, 2011, 31(4): 378-381(in Chinese).
    [7] 霍强,张靖. 用于符合测量的多通道符合计数器[J]. 量子光学学报,2011,17(2):135-140.HUO Qiang, ZHANG Jing. Multi-channel coincidence counter for coincidence measurement[J]. Acta Sinica Quantum Optica, 2011, 17(2): 135-140(in Chinese).
    [8] WANG C, LI H, RAMIREZ R A, et al. A real time coincidence system for high count-rate TOF or non-TOF PET cameras using hybrid method combining AND-logic and time-mark technology[J]. IEEE Transactions on Nuclear Science, 2010, 57(2): 708-714.
    [9] SONG J, AN Q, LIU S. A high-resolution time-to-digital converter implemented in field-programmable-gate arrays[J]. IEEE Transactions on Nuclear Science, 2006, 53(1): 236-241.
    [10] 安国臣,张秀清,王晓君,等. 基于FPGA的高精度时间数字转换方法研究[J]. 电测与仪表,2014,51(2):76-80.AN Guochen, ZHANG Xiuqing, WANG Xiaojun, et al. Research on high-precision time-to-digital conversion based on FPGA[J]. Electrical Measurement and Instrumentation, 2014, 51(2): 76-80(in Chinese).
    [11] 潘维斌,龚光华,李荐民. 基于进位链的多通道时间数字转换器[J]. 清华大学学报:自然科学版,2013,53(10):1391-1396.PAN Weibin, GONG Guanghua, LI Jianmin. Carry chain based multi-channel time-to-digital converter[J]. Journal of Tsinghua University: Natural Science Edition, 2013, 53(10): 1391-1396(in Chinese).
    [12] 钟强,刘鹏飞,刘宝军,等. 基于FPGA的同步计数器的优化结构分析[J]. 单片机与嵌入式系统应用,2016,16(10):20-22.ZHONG Qiang, LIU Pengfei, LIU Baojun, et al. Optimization structure analysis of synchronous counter based on FPGA[J]. Microcontrollers & Embedded Systems, 2016, 16(10): 20-22(in Chinese).
    [13] WU J, SHI Z. The 10 ps wave union TDC: Improving FPGA TDC resolution beyond its cell -delay[C]∥IEEE Nuclear Science Symposium Conference Record. USA: IEEE, 2009.
    [14] WU J. On-chip processing for the wave union TDC implemented in FPGA[C]∥Real Time Conference. USA: IEEE, 2009.
    [15] 康晓文,刘亚强,崔均健,等. 基于FPGA进位链TDC延时模型的建立与性能测试[J]. 核电子学与探测技术,2011,31(3):267-273.KANG Xiaowen, LIU Yaqiang, CUI Junjian, et al. Delay model and performance testing for FPGA carry chain TDC[J]. Nuclear Electronics & Detection Technology, 2011, 31(3): 267-273(in Chinese).
    [16] FAN H H, CAO P, LIU S B, et al. TOT measurement implemented in FPGA TDC[J]. Chinese Physics C, 2015, 39(11): 60-64.
    [17] 高力为,宋克柱. GPS时钟同步的分布式地球物理探测系统设计[J]. 电子测量技术,2017,40(1):105-109.GAO Liwei, SONG Kezhu. Design of geophysical detection node distributed system based on GPS clock synchronization[J]. Electronic Measurement Technology, 2017, 40(1): 105-109(in Chinese).
计量
  • 文章访问数:  249
  • HTML全文浏览量:  0
  • PDF下载量:  1147
  • 被引次数: 0
出版历程
  • 刊出日期:  2019-01-19

目录

    /

    返回文章
    返回