CEFR首炉堆芯核设计计算不确定度分析

张坚, 喻宏, 胡赟, 徐李

张坚, 喻宏, 胡赟, 徐李. CEFR首炉堆芯核设计计算不确定度分析[J]. 原子能科学技术, 2019, 53(2): 200-208. DOI: 10.7538/yzk.2018.youxian.0275
引用本文: 张坚, 喻宏, 胡赟, 徐李. CEFR首炉堆芯核设计计算不确定度分析[J]. 原子能科学技术, 2019, 53(2): 200-208. DOI: 10.7538/yzk.2018.youxian.0275
ZHANG Jian, YU Hong, HU Yun, XU Li. Uncertainty Analysis on Nuclear Design Calculation of the First Loading Core of CEFR[J]. Atomic Energy Science and Technology, 2019, 53(2): 200-208. DOI: 10.7538/yzk.2018.youxian.0275
Citation: ZHANG Jian, YU Hong, HU Yun, XU Li. Uncertainty Analysis on Nuclear Design Calculation of the First Loading Core of CEFR[J]. Atomic Energy Science and Technology, 2019, 53(2): 200-208. DOI: 10.7538/yzk.2018.youxian.0275

CEFR首炉堆芯核设计计算不确定度分析

Uncertainty Analysis on Nuclear Design Calculation of the First Loading Core of CEFR

  • 摘要: 在中国实验快堆(CEFR)设计阶段,堆芯计算不确定度分析主要是基于在俄罗斯开展的零功率模拟实验获得的,相关不确定度的理论分析评价工作存在不足。本文采用统计抽样方法、确定论微扰方法及直接扰动方法,通过对不确定度来源进行计算分析,给出了堆芯核设计计算的主要结果参数,包括keff、控制棒价值、钠空泡效应及功率分布的不确定度定量评价。通过CEFR的分析工作,建立了核设计不确定度评价的方法流程,为后续中国示范快堆核设计的不确定度评价分析奠定了基础。

     

    Abstract: In the design phase of China Experimental Fast Reactor (CEFR), the uncertainty analysis was mainly based on the zero-power simulation experiment in Russia. There are some shortages in the work of nuclear design uncertainty analysis and evaluation. In this paper, based on statistical sampling method, deterministic theory perturbation method and direct perturbation method, different sources of uncertainty were evaluated. The uncertainty of main nuclear calculation results such as keff, control rod worth, sodium void effect and power distribution was given. Through the analysis work of CEFR, a method framework for the evaluation of uncertainty was established. The framework and method lay the foundation for the uncertainty analysis of nuclear design for China Demonstration Fast Reactor.

     

  • [1] GANDINI A. Study of the sensitivity of calculations for fast reactors fueled with 239Pu-238U and 233U-Th to uncertainties in nuclear data, ANL-6608[R]. USA: ANL, 1962.
    [2] don REARDEN M, BRADLEY T. Uncertainty quantification techniques of SCALE/TSUNAMI[C]∥2011 ANS Annual Meeting. USA: [s. n.], 2011.
    [3] PALMIOTTI G, SALVATORES M, ALIBERTI G. Methods in use for sensitivity analysis, uncertainty evaluation, and target accuracy assessment, INL/CON-07-13356[R]. [S. l.]: [s. n.], 2007.
    [4] IVANOV K, PARISI C, CABELLOS O. Uncertainty analysis in reactor physics modeling[J]. Science and Technology of Nuclear Installations, 2013, 12: 1-2.
    [5] SALVATORES M. Uncertainty and target accuracy assessment for innovative systems using recent covariance data evaluations[R]. Vienna: Nuclear Energy Agency, 2008.
    [6] IVANOV K, AVRAMOVA M, KAMEROW S. Benchmarks for uncertainty analysis in modelling (UAM) for the design, operation and safety analysis of LWRs, NEA/NSC/DOC(2013)[R]. [S. l.]: [s. n.], 2013.
    [7] OECD/NEA benchmark for uncertainty analysis in modeling (UAM) for LWRS-summary and discussion of neutronics cases[R/OL]. [2014-06]. https:∥www.researchgate.net/publication/273345598.
    [8] Clinch river breeder reactor project: Preliminary safety analysis report, Volume 4A[R]. US: Nuclear Regulatory Commission, 1975.
    [9] 王文明,吴海成. 一维临界基准装置keff对核数据的灵敏度和不确定度分析方法[C]∥第十四届反应堆数值计算与粒子输运学术会议. 银川:[出版者不详],2012.
    [10] 万承辉,曹良志,吴宏春,等. 基于抽样方法的特征值不确定度分析[J]. 原子能科学技术,2015,49(11):1954-1960.WAN Chenghui, CAO Liangzhi, WU Hongchun, et al. Eigenvalue uncertainty analysis based on statistical sampling method[J]. Atomic Energy Science and Technology, 2015, 49(11): 1954-1960(in Chinese).
    [11] 刘勇,曹良志,吴宏春,等. 基于经典微扰理论的特征值灵敏度和不确定度分析[J]. 原子能科学技术,2015,49(7):1247-1253.LIU Yong, CAO Liangzhi, WU Hongchun, et al. Eigenvalue sensitivity and uncertainty analysis based on classical perturbation theory[J].Atomic Energy Science and Technology, 2015, 49(7): 1247-1253(in Chinese).
    [12] 刚直,周培德. 由截面不确定度引起积分参数keff不确定度一维分析程序开发[C]∥2008年反应堆物理会议. 合肥:[出版者不详],2008.
    [13] 王新哲,喻宏,王文明,等. 核截面不确定性引起的keff不确定度的直接蒙特卡罗方法计算[J]. 原子能科学技术,2014,48(9):1627-1633.WANG Xinzhe, YU Hong, WANG Wenming, et al. Uncertainty calculation of keff caused by uncertainty of nuclear cross-section using direct Monte Carlo method[J]. Atomic Energy Science and Technology, 2014, 48(9): 1627-1633(in Chinese).
    [14] 杨军,喻宏,徐李,等. 中国实验快堆keff计算值对核数据的灵敏度和不确定度分析[J]. 核动力工程,2014,35(增刊):71-75.YANG Jun, YU Hong, XU Li, et al. Analysis of sensitivity and uncertainty of calculated keff to nuclear data on China Experimental Fast Reactor[J]. Atomic Energy Science and Technology, 2014, 35(Suppl.): 71-75(in Chinese).
    [15] 胡泽华,叶涛,刘雄国,等. 抽样法与灵敏度法keff不确定度量化[J]. 物理学报,2017,66(1):012801.HU Zehua, YE Tao, LIU Xiongguo, et al. Uncertainty quantification in the calculation of keff using sensitivity and stochastic sampling method[J]. Acta Phys Sin, 2017, 66(1): 012801(in Chinese).
    [16] 中国实验快堆物理计算误差分析,CEFR01Z19LWS02-JS[R]. 北京:中国原子能科学研究院,2006.
    [17] 杨福昌,谢光善,李泽华,等. 中国实验快堆最终安全分析报告:第4章[R]. 北京:中国原子能科学研究院,2008.
计量
  • 文章访问数:  461
  • HTML全文浏览量:  0
  • PDF下载量:  1019
  • 被引次数: 0
出版历程
  • 刊出日期:  2019-02-19

目录

    /

    返回文章
    返回