反应堆内熔融物冷却的三维数值模拟研究

薛峰, 袁明豪, 张建, 陈秋炀

薛峰, 袁明豪, 张建, 陈秋炀. 反应堆内熔融物冷却的三维数值模拟研究[J]. 原子能科学技术, 2019, 53(7): 1255-1263. DOI: 10.7538/yzk.2018.youxian.0504
引用本文: 薛峰, 袁明豪, 张建, 陈秋炀. 反应堆内熔融物冷却的三维数值模拟研究[J]. 原子能科学技术, 2019, 53(7): 1255-1263. DOI: 10.7538/yzk.2018.youxian.0504
XUE Feng, YUAN Minghao, ZHANG Jian, CHEN Qiuyang. Research on 3D Simulation of Core Melt Cooling in Reactor[J]. Atomic Energy Science and Technology, 2019, 53(7): 1255-1263. DOI: 10.7538/yzk.2018.youxian.0504
Citation: XUE Feng, YUAN Minghao, ZHANG Jian, CHEN Qiuyang. Research on 3D Simulation of Core Melt Cooling in Reactor[J]. Atomic Energy Science and Technology, 2019, 53(7): 1255-1263. DOI: 10.7538/yzk.2018.youxian.0504

反应堆内熔融物冷却的三维数值模拟研究

Research on 3D Simulation of Core Melt Cooling in Reactor

  • 摘要: 目前国际上普遍采用堆芯熔融物压力容器内滞留(IVR)策略来缓解严重事故后果。本文基于日本应用能源研究所开发的核电厂事故分析程序SAMPSON,对其压力容器内熔融物冷却分析(DCA)模块进行改进,增加了熔池内金属和氧化物分层模型,开发了熔融物三维直角坐标网格与压力容器三维曲面坐标的交界面几何参数前处理程序,改进了压力容器外冷却的传热关系式。通过AP1000核电机组严重事故下的IVR对改进后的程序进行分析验证,并与实验结果进行对比。结果表明,改进后的SAMPSON程序可对核电厂严重事故下下封头内的熔融物冷却滞留开展有效的模拟分析。

     

    Abstract: At present, in-vessel retention (IVR) strategy is widely used in the world to mitigate the consequences of severe accidents. Based on the nuclear power plant accident analysis program SAMPSON developed by the Applied Energy Research Institute of Japan, the debris cooling analysis (DCA) module of SAMPSON program was improved, the stratified model of ceramic layer and metallic layer in molten pool was added, the pre-processing program for interface geometric parameters between 3D Cartesian meshes of melt and 3D surface coordinates of pressure vessel was developed, and the heat transfer relationship of the outer surface of the pressure vessel was improved. The improved program was verified by the IVR under the severe accident of the AP1000 nuclear power plant, and the calculated results were compared with experimental results. The results show that the improved SAMPSON program can effectively simulate and analyze the cooling and retention of melt in the lower head for nuclear power plant under severe accident.

     

  • [1] KYMALAINEN O, YUOMISTO H, THEOFANOUS T G. In-vessel retention of corium at the Loviisa plant[J]. Nuclear Engineering and Design, 1997, 169(1-3): 109-130.
    [2] THEOFANOUS T G, LIU C, ADDITON S, et al. In-vessel coolability and retention of a core melt, DOE/ID-10460[R]. USA: Department of Energy, 1996.
    [3] REMPE J L, KNUDSON D L. Margin for in-vessel retention in the APR1400-VESTA and SCDAP/RELAP5-3D analyses, INEEL/EXT-04-02549[R]. [S. l.]: [s. n.], 2004.
    [4] XING Ji, SONG Daiyong, WU Yuxiang. HPR1000: Advanced pressurized water reactor with active and passive safety[J]. Engineering, 2016, 2(1): 79-87.
    [5] 杨晓,杨燕华. MOPOL程序开发及IVR有效性评价中的不确定性分析[J]. 上海交通大学学报,2012,47(9):1498-1502,1508.YANG Xiao, YANG Yanhua. MOPOL program development and uncertainty analysis in IVR effectiveness evaluation[J]. Journal of Shanghai Jiaotong University, 2012, 47(9): 1498-1502, 1508(in Chinese).
    [6] 陈星,张世顺,林继铭. CPR1000熔融物堆内滞留(IVR)技术有效性评估[J]. 核动力工程,2011,32(3):6-9,24.CHEN Xing, ZHANG Shishun, LIN Jiming. Evaluation of the technology effectiveness of melt in-vessel retention (IVR) of CPR1000[J]. Nuclear Power Engineering, 2011, 32(3): 6-9, 24(in Chinese).
    [7] 傅孝良. 核电厂IVR评价的严重事故序列及堆芯熔融过程研究[D]. 上海:上海交通大学,2010.
    [8] ZHANG Y P, QIU S Z, SU G H, et al. Analysis of safety margin of in-vessel retention for AP1000[J]. Nuclear Engineering and Design, 2010, 240(8): 2023-2033.
    [9] ZHANG Y P, ZHANG L T, ZHOU Y K, et al. The COPRA experiments on the in-vessel melt pool behavior in the RPV lower head[J]. Annals of Nuclear Energy, 2016, 89(1): 19-27.
    [10] 曹臻,王佳赟,郭宁,等. 三层熔池结构IVR分析程序开发及验证[J]. 原子能科学技术,2018,52(5):912-919.CAO Zhen, WANG Jiayun, GUO Ning, et al. Development and verification of IVR analysis program for three-layer molten pool configuration[J]. Atomic Energy Science and Technology, 2018, 52(5): 912-919(in Chinese).
    [11] ESMAILI H, KHATIB-RAHBAR M. Analysis of in-vessel retention and ex-vessel fuel coolant interaction for AP1000, ERI/NRC 04-201, NUREG/CR-6849[R]. USA: Energy Research Inc., 2004.
    [12] SCDAP/RELAP5/MOD3.1 code manual, Volume Ⅳ: MATPRO: A library of materials properties for light-water-reactor accident analysis, NUREG/CR-6150[R]. USA: Nuclear Regulatory Commission, 1997.
    [13] PARK H, DHIR V K. Effect of outside cooling on the thermal behavior of a pressurized water reactor vessel lower head[J]. Nuclear Technology, 1992, 100(3): 331-346.
    [14] BONNET J M, SEILER J M. Thermal hydraulic phenomena in corium pools: The BALI experiment[C]∥7th International Conference on Nuclear Engineering. Tokyo, Japan: [S. l.]: [s. n.], 1999.
计量
  • 文章访问数:  467
  • HTML全文浏览量:  0
  • PDF下载量:  1101
  • 被引次数: 0
出版历程
  • 刊出日期:  2019-07-19

目录

    /

    返回文章
    返回